Connectivity and orientation of the seven helical bundle in the tachykinin NK-1 receptor probed by zinc site engineering. 1996

C E Elling, and T W Schwartz
Laboratory for Molecular Pharmacology, The Laboratory Center, Rigshospitalet, University of Copenhagen, Denmark.

A high affinity, tridentate metal ion site has been constructed previously by His substitutions in an antagonist binding site located between transmembrane segment (TM)-V and TM-VI in the substance P NK-1 receptor. Here, an attempt is made to probe helix-helix interactions systematically in the NK-1 receptor by engineering of bis-His Zn(II) sites. His residues were introduced at selected positions individually and in combinations in the exterior segments of TM-II, III and V in both the wild-type background and after Ala substitution of naturally occurring His residues, and the increase in the affinity for Zn(II) was monitored in competition binding experiments with iodinated substance P or a tritiated non-peptide antagonist. In this way, two high affinity bis-His sites were constructed between position 193 in TM-V (Glu193, G1uV:01) and position 109 in TM-III (Asn1O9, AsnIII:05) as well as between the neighboring, naturally occurring His108 in TM-III (HisIII:04) and position 92 in TM-II (Tyr92, TyrII:24), respectively. Functionally, the coordination of zinc ions at these two sites blocked the receptor as it antagonized the substance P-induced increase in phosphatidylinositol turnover. It is concluded that the bis-His zinc sites from the central TM-III helix to TM-II and -V, respectively, together with the interconnected, previously constructed tridentate site between TM-V and -VI, constitute a basic network of distance constraints for the molecular models of receptors with seven transmembrane segments which, for example, strongly support an anti-clockwise orientation of the seven helical bundle as viewed from the extracellular space.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013373 Substance P An eleven-amino acid neurotransmitter that appears in both the central and peripheral nervous systems. It is involved in transmission of PAIN, causes rapid contractions of the gastrointestinal smooth muscle, and modulates inflammatory and immune responses. Euler-Gaddum Substance P,Hypothalamic Substance P,SP(1-11),Euler Gaddum Substance P,Substance P, Euler-Gaddum,Substance P, Hypothalamic

Related Publications

C E Elling, and T W Schwartz
December 1996, Bioorganic & medicinal chemistry,
C E Elling, and T W Schwartz
December 1997, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
C E Elling, and T W Schwartz
August 2002, European journal of pharmacology,
C E Elling, and T W Schwartz
January 2009, European journal of pharmacology,
C E Elling, and T W Schwartz
April 1999, Neuropeptides,
Copied contents to your clipboard!