Effects of ethanol on phosphorylation of lipids in rat synaptic plasma membranes. 1996

W Tong, and G Y Sun
Biochemistry Department, University of Missouri, Columbia 65212, USA.

Synaptic plasma membranes (SPM) isolated from rat cerebral cortex contain lipid kinases for conversion of phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), and diacylglycerol (DG) to PIP, phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidic acid (PA), respectively. These anionic phospholipids are important in signal transduction mechanisms and are required for synaptic function. The effect of ethanol and other aliphatic alcohols on phosphorylation of these lipids in SPM has not been established. Incubation of SPM with [gamma-32P]ATP resulted in labeling of PIP, lyso-PIP, PIP2, and PA. Ethanol (50-200 mM) added to the incubation system showed a dose-dependent decrease in labeling of PIP2, but not PIP or PA. To a lesser extent, labeling of PIP2 was also inhibited by 1-propanol, but neither isopropanol nor 1-butanol could alter the PIP2 labeling pattern. Under similar incubation conditions, labeling of PIP and PA in SPM was not altered by ethanol, 1-propanol, iso-propanol, but 1-butanol stimulated PIP labeling with a peak at 25 mM. Addition of exogenous PIP to the incubation mixture led to an increase in labeling of PIP2, suggesting that the endogenous PIP pool in SPM is limiting for the synthesis of PIP2 in SPM. Interestingly, when SPM were incubated with exogenous PIP, addition of ethanol (50-100 mM) to this incubation mixture resulted in an increase in PIP2 labeling. Taken together, these results suggest a specific effect of ethanol on PIP kinase in SPM, and this effect seems to be dependent on the location and/or amount of PIP in the membrane.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane
D015290 Second Messenger Systems Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system. Intracellular Second Messengers,Second Messengers,Intracellular Second Messenger,Messenger, Second,Messengers, Intracellular Second,Messengers, Second,Second Messenger,Second Messenger System,Second Messenger, Intracellular,Second Messengers, Intracellular,System, Second Messenger,Systems, Second Messenger
D046508 Culture Techniques Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types. Culture Technique,Technique, Culture,Techniques, Culture
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

W Tong, and G Y Sun
January 1987, Journal of neuroscience research,
W Tong, and G Y Sun
February 1996, The Journal of pharmacology and experimental therapeutics,
W Tong, and G Y Sun
October 1963, The Journal of laboratory and clinical medicine,
W Tong, and G Y Sun
February 1964, Nutrition reviews,
W Tong, and G Y Sun
March 1994, The Journal of pharmacology and experimental therapeutics,
W Tong, and G Y Sun
January 1979, Progress in clinical and biological research,
W Tong, and G Y Sun
February 1980, Journal of neurochemistry,
Copied contents to your clipboard!