Changes in mRNA levels of the sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase isoforms in the rat soleus muscle regenerating from notexin-induced necrosis. 1996

E Zádor, and L Mendler, and M Ver Heyen, and L Dux, and F Wuytack
Institute of Biochemistry, Albert Szent-Györgyi Medical University Szeged, Hungary.

The relative mRNA levels corresponding to the different sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase isoforms (SERCA1a, SERCA1b, SERCA2a, SERCA2b and SERCA3) were measured by reverse transcriptase-PCR in rat soleus muscles regenerating after notexin-induced necrosis. The succession of appearance of the different types of SERCA mRNA species in regenerating muscle largely recapitulates those observed during normal ontogenesis. The mRNA levels of the muscle-specific isoforms SERCA1a and SERCA2a became very low on the first and third days after injection of the snake venom. It was only on the fifth day of regeneration that the mRNA of the neonatal variant of the fast-twitch skeletal SERCA1b isoform began to rise, well before the other SERCA transcripts. At 7 and 10 days, i.e. at a time when the new myofibres normally become reinnervated, the mRNA level of SERCA1a and SERCA2a increased markedly, but the fast-twitch skeletal SERCA1a isoform was still the most prominent. On day 21, in the advanced stage of regeneration, a switch in the relative expression levels of SERCA1a and SERCA2a mRNA was observed and the ratio of both isoforms became similar to that found in the normal soleus muscles. This was followed by a decline in the level of all SERCA mRNA species, so that on day 28 the levels of the sarcoplasmic/endoplasmatic-reticulum Ca(2+)-pump RNAs was again lower but their ratio remained similar to that of the untreated control soleus.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009336 Necrosis The death of cells in an organ or tissue due to disease, injury or failure of the blood supply.
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D004546 Elapid Venoms Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized. Cobra Venoms,Elapidae Venom,Elapidae Venoms,Naja Venoms,Cobra Venom,Elapid Venom,Hydrophid Venom,Hydrophid Venoms,King Cobra Venom,Naja Venom,Ophiophagus hannah Venom,Sea Snake Venom,Sea Snake Venoms,Venom, Cobra,Venom, Elapid,Venom, Elapidae,Venom, Hydrophid,Venom, King Cobra,Venom, Naja,Venom, Ophiophagus hannah,Venom, Sea Snake,Venoms, Cobra,Venoms, Elapid,Venoms, Elapidae,Venoms, Hydrophid,Venoms, Naja,Venoms, Sea Snake
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

E Zádor, and L Mendler, and M Ver Heyen, and L Dux, and F Wuytack
February 2014, European journal of oral sciences,
E Zádor, and L Mendler, and M Ver Heyen, and L Dux, and F Wuytack
December 1996, The American journal of physiology,
E Zádor, and L Mendler, and M Ver Heyen, and L Dux, and F Wuytack
October 1996, Journal of cell science,
E Zádor, and L Mendler, and M Ver Heyen, and L Dux, and F Wuytack
October 2002, American journal of physiology. Endocrinology and metabolism,
E Zádor, and L Mendler, and M Ver Heyen, and L Dux, and F Wuytack
July 1992, Biochemical and biophysical research communications,
E Zádor, and L Mendler, and M Ver Heyen, and L Dux, and F Wuytack
February 1993, The American journal of physiology,
E Zádor, and L Mendler, and M Ver Heyen, and L Dux, and F Wuytack
December 1992, Seikagaku. The Journal of Japanese Biochemical Society,
E Zádor, and L Mendler, and M Ver Heyen, and L Dux, and F Wuytack
November 2000, The Journal of experimental biology,
E Zádor, and L Mendler, and M Ver Heyen, and L Dux, and F Wuytack
August 1991, Biochemical and biophysical research communications,
E Zádor, and L Mendler, and M Ver Heyen, and L Dux, and F Wuytack
February 1992, Archives of biochemistry and biophysics,
Copied contents to your clipboard!