Automated scoring of micronuclei in binucleated human lymphocytes. 1996

W Böcker, and C Streffer, and W U Müller, and C Yu
Institut für Medizinische Strahlenbiologie, Universitäts-klinikum Essen, Germany.

Manual and automatic scoring of micronuclei (MN) in binucleated human lymphocytes (BNC) were compared after irradiation of whole blood samples. The blood samples were irradiated with X-ray doses (1, 2 or 3 Gy) and stained with Giemsa. The preparation technique was optimized in such a way that acceptable conditions (cell density, contrast) were obtained for both scoring procedures. To estimate the quality of automatic micronucleus detection, two researchers who had different experience in scoring MN (6 months and 5 years) analysed the samples independently from each other. Automatic scoring was carried out with a digital image analysis system and the recognition procedure was divided into two parts. The BNC positions were detected with low microscope magnification (100x), and the recognition of micronuclei within the cytoplasm of the classified BNC was carried out at high magnification (630x). A fuzzy logic classification system as well as two different segmentation steps (preclassification and postclassification) made it possible that about 94% of all automatically recognized BNC were classified correctly). On the other hand, the classification system was optimized in such a way that false positive decisions were minimized (95% of automatically recognized micronuclei were classified correctly). Failure to recognize micronuclei (8.5%-25% false negatives) was mainly due to extremely small micronuclei, poor contrast with respect to the cytoplasm, and aggregation of micronuclei especially at higher doses.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001331 Automation Controlled operation of an apparatus, process, or system by mechanical or electronic devices that take the place of human organs of observation, effort, and decision. (From Webster's Collegiate Dictionary, 1993) Automations
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations
D015162 Micronucleus Tests Induction and quantitative measurement of chromosomal damage leading to the formation of micronuclei (MICRONUCLEI, CHROMOSOME-DEFECTIVE) in cells which have been exposed to genotoxic agents or IONIZING RADIATION. Micronucleus Assays,Assay, Micronucleus,Assays, Micronucleus,Micronucleus Assay,Micronucleus Test,Test, Micronucleus,Tests, Micronucleus
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D048629 Micronuclei, Chromosome-Defective Defective nuclei produced during the TELOPHASE of MITOSIS or MEIOSIS by lagging CHROMOSOMES or chromosome fragments derived from spontaneous or experimentally induced chromosomal structural changes. Chromosome-Defective Micronuclei,Genotoxicant-Induced Micronuclei,Micronuclei, Genotoxicant-Induced,Micronucleus, Chromosome-Defective,Chromosome Defective Micronuclei,Chromosome-Defective Micronucleus,Genotoxicant Induced Micronuclei,Genotoxicant-Induced Micronucleus,Micronuclei, Chromosome Defective,Micronuclei, Genotoxicant Induced,Micronucleus, Chromosome Defective,Micronucleus, Genotoxicant-Induced

Related Publications

W Böcker, and C Streffer, and W U Müller, and C Yu
July 1993, Mutagenesis,
W Böcker, and C Streffer, and W U Müller, and C Yu
May 2006, Mutagenesis,
W Böcker, and C Streffer, and W U Müller, and C Yu
October 1994, Cytometry,
W Böcker, and C Streffer, and W U Müller, and C Yu
March 2022, Scientific reports,
W Böcker, and C Streffer, and W U Müller, and C Yu
January 1990, Teratogenesis, carcinogenesis, and mutagenesis,
W Böcker, and C Streffer, and W U Müller, and C Yu
January 1989, Environmental and molecular mutagenesis,
W Böcker, and C Streffer, and W U Müller, and C Yu
January 2014, Asian Pacific journal of cancer prevention : APJCP,
W Böcker, and C Streffer, and W U Müller, and C Yu
May 1988, Mutation research,
W Böcker, and C Streffer, and W U Müller, and C Yu
September 2016, Radiatsionnaia biologiia, radioecologiia,
Copied contents to your clipboard!