Electron contamination in clinical high energy photon beams. 1996

R Sjögren, and M Karlsson
Radiation Physics Department, Umeå University, Sweden.

The electron contamination in photon beams has been investigated by means of contaminating lepton depth doses and dose profiles in different geometries with two 20 MV beams. Different components of this contamination have been investigated separately by systematically adding contamination to a "clean" reference field. At 20 MV, the air generated electrons were found to be almost negligible compared to the electrons originating from the accelerator head when measurements were performed in standard fields at SSDs between 80 and 120 cm. The total electron part of the depth dose curve was then almost the same, i.e., independent of SSD, when the collimator opening was held fixed. However, when different accessories such as a shaping block and different attenuating plates were located in the beam path below the collimators, a large SSD dependence of the electron contamination was noticed. A comparison was also made between two machines, one equipped with a multileaf collimator, with similar beam qualities at 20 MV. These measurements indicate that the interior view of the treatment head seen by the detector (mainly the flattening filter, monitor chamber, or other electron generating material) influences the magnitude of the electron contamination. When the collimator opening is decreased the electron contamination will also decrease as parts of the electron source will be shielded by the collimator blocks.

UI MeSH Term Description Entries
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D011882 Radiotherapy, High-Energy Radiotherapy using high-energy (megavolt or higher) ionizing radiation. Types of radiation include gamma rays, produced by a radioisotope within a teletherapy unit; x-rays, electrons, protons, alpha particles (helium ions) and heavy charged ions, produced by particle acceleration; and neutrons and pi-mesons (pions), produced as secondary particles following bombardment of a target with a primary particle. Megavolt Radiotherapy,High-Energy Radiotherapy,Radiotherapy, Megavolt,High Energy Radiotherapy,Radiotherapy, High Energy
D004583 Electrons Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS. Fast Electrons,Negatrons,Positrons,Electron,Electron, Fast,Electrons, Fast,Fast Electron,Negatron,Positron
D000388 Air The mixture of gases present in the earth's atmosphere consisting of oxygen, nitrogen, carbon dioxide, and small amounts of other gases.
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)

Related Publications

R Sjögren, and M Karlsson
February 1985, Physics in medicine and biology,
R Sjögren, and M Karlsson
December 1993, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
R Sjögren, and M Karlsson
October 1997, Physics in medicine and biology,
R Sjögren, and M Karlsson
March 1981, Strahlentherapie,
R Sjögren, and M Karlsson
January 2006, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al],
R Sjögren, and M Karlsson
January 1989, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society,
R Sjögren, and M Karlsson
May 2005, Medical physics,
R Sjögren, and M Karlsson
January 1983, Medical physics,
R Sjögren, and M Karlsson
May 1983, The British journal of radiology,
R Sjögren, and M Karlsson
January 1998, Medical physics,
Copied contents to your clipboard!