Microdosimetric evaluation of relative biological effectiveness for 103Pd, 125I, 241Am, and 192Ir brachytherapy sources. 1996

C S Wuu, and P Kliauga, and M Zaider, and H I Amols
Department of Radiation Oncology, Columbia University, New York, NY 10032, USA.

OBJECTIVE To determine the microdosimetric-derived relative biological effectiveness (RBE) of 103Pd, 125I, 241Am, and 192Ir brachytherapy sources at low doses and/or low dose rates. METHODS The Theory of Dual Radiation Action can be used to predict expected RBE values based on the spatial distribution of energy deposition at microscopic levels from these sources. Single-event lineal energy spectra for these isotopes have been obtained both experimentally and theoretically. A grid-defined wall-less proportional counter was used to measure the lineal energy distributions. Unlike conventional Rossi proportional counters, the counter used in these measurements has a conducting nylon fiber as the central collecting anode and has no metal parts. Thus, the Z-dependence of the photoelectric effect is eliminated as a source of measurement error. Single-event spectra for these brachytherapy sources have been also calculated by: (a) the Monte Carlo code MCNP to generate the electron slowing down spectrum, (b) transport of monoenergetic electron tracks, event by event, with our Monte Carlo code DELTA, (c) using the concept of associated volume to obtain the lineal energy distribution f(y) for each monoenergetic electron, and (d) obtaining the composite lineal energy spectrum for a given brachytherapy source based on the electron spectrum calculated at step (a). RESULTS Relative to 60Co, the RBE values obtained from this study are: 2.3 for 103Pd, 2.1 for 125I, 2.1 for 241Am, and 1.3 for 192Ir. CONCLUSIONS These values are consistent with available data from in vitro cell survival experiments. We suggest that, at least for these brachytherapy sources, microdosimetry may be used as a credible alternative to time-consuming (and often uncertain) radiobiological experiments to obtain information on radiation quality and make reliable predictions of RBE in low dose rate brachytherapy.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007496 Iridium Radioisotopes Unstable isotopes of iridium that decay or disintegrate emitting radiation. Ir atoms with atomic weights 182-190, 192, and 194-198 are radioactive iridium isotopes. Radioisotopes, Iridium
D010165 Palladium A chemical element having an atomic weight of 106.4, atomic number of 46, and the symbol Pd. It is a white, ductile metal resembling platinum, and following it in abundance and importance of applications. It is used in dentistry in the form of gold, silver, and copper alloys.
D011868 Radioisotopes Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Daughter Isotope,Daughter Nuclide,Radioactive Isotope,Radioactive Isotopes,Radiogenic Isotope,Radioisotope,Radionuclide,Radionuclides,Daughter Nuclides,Daugter Isotopes,Radiogenic Isotopes,Isotope, Daughter,Isotope, Radioactive,Isotope, Radiogenic,Isotopes, Daugter,Isotopes, Radioactive,Isotopes, Radiogenic,Nuclide, Daughter,Nuclides, Daughter
D012062 Relative Biological Effectiveness The ratio of radiation dosages required to produce identical change based on a formula comparing other types of radiation with that of gamma or roentgen rays. Biological Effectiveness, Relative,Effectiveness, Biologic Relative,Effectiveness, Biological Relative,Relative Biologic Effectiveness,Biologic Effectiveness, Relative,Biologic Relative Effectiveness,Biological Relative Effectiveness,Effectiveness, Relative Biologic,Effectiveness, Relative Biological,Relative Effectiveness, Biologic
D001918 Brachytherapy A collective term for interstitial, intracavity, and surface radiotherapy. It uses small sealed or partly-sealed sources that may be placed on or near the body surface or within a natural body cavity or implanted directly into the tissues. Curietherapy,Implant Radiotherapy,Plaque Therapy, Radioisotope,Radioisotope Brachytherapy,Radiotherapy, Interstitial,Radiotherapy, Intracavity,Radiotherapy, Surface,Brachytherapy, Radioisotope,Interstitial Radiotherapy,Intracavity Radiotherapy,Radioisotope Plaque Therapy,Radiotherapy, Implant,Surface Radiotherapy,Therapy, Radioisotope Plaque
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D000576 Americium A completely man-made radioactive actinide with atomic symbol Am, and atomic number 95. Its valence can range from +3 to +6. Because of its nonmagnetic ground state, it is an excellent superconductor. It is also used in bone mineral analysis and as a radiation source for radiotherapy.

Related Publications

C S Wuu, and P Kliauga, and M Zaider, and H I Amols
January 1993, Medical physics,
C S Wuu, and P Kliauga, and M Zaider, and H I Amols
January 1992, International journal of radiation oncology, biology, physics,
C S Wuu, and P Kliauga, and M Zaider, and H I Amols
June 1998, Physics in medicine and biology,
C S Wuu, and P Kliauga, and M Zaider, and H I Amols
March 2000, Physics in medicine and biology,
C S Wuu, and P Kliauga, and M Zaider, and H I Amols
September 2014, Physics in medicine and biology,
C S Wuu, and P Kliauga, and M Zaider, and H I Amols
November 1984, International journal of radiation oncology, biology, physics,
C S Wuu, and P Kliauga, and M Zaider, and H I Amols
January 2006, Radiation protection dosimetry,
C S Wuu, and P Kliauga, and M Zaider, and H I Amols
January 2009, Medical physics,
Copied contents to your clipboard!