Lactase and sucrase-isomaltase gene expression during Caco-2 cell differentiation. 1995

E H Van Beers, and R H Al, and E H Rings, and A W Einerhand, and J Dekker, and H A Büller
Department of Pediatrics G8-260, Academic Medical Centre, Amsterdam, The Netherlands.

The Caco-2 cell line is derived from a human colon adenocarcinoma and differentiates in vitro into small-intestinal enterocyte-like cells, expressing the hydrolases lactase and sucrase-isomaltase. We cultured Caco-2 cells on permeable supports from 0 to 37 days after plating to study endogenous lactase and sucrase-isomaltase gene expression in relation to cell differentiation. Profiles of lactase and sucrase-isomaltase mRNA, protein and enzyme activity were analysed on a per-cell basis, using immunocytochemistry, RNase protection assays, metabolic polypeptide labelling and enzyme activity assays. Tight-junction formation was complete 6 days after plating. Immunocytochemistry of Caco-2 cross-sections showed lactase and sucrase-isomaltase predominantly in the microvillar membrane of polarized cells. mRNA, protein and enzyme activity of lactase appeared consecutively, reaching maximum levels 8-11 days after plating. Whereas lactase mRNA and protein biosynthesis showed a sharp decline after peak levels, lactase activity remained high until 37 days after plating. In contrast, mRNA and protein biosynthesis and activity of sucrase-isomaltase peaked successively 11-21 days after plating, and exhibited comparable levels throughout the entire experiment. The following conclusions were reached. (1) In Caco-2 cells, biosynthesis of lactase and sucrase-isomaltase is regulated by the amount of their mRNAs, indicating transcriptional control. (2) Sucrase-isomaltase activity is most probably transcriptionally controlled at all time points. (3) In contrast, lactase activity is initially regulated by its level of biosynthesis. After its peak at 8 days, the slow decline in activity compared with its biosynthesis indicates high stability. (4) Different mRNA profiles for lactase and sucrase-isomaltase indicate different mechanisms of transcriptional regulation of these genes.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases

Related Publications

E H Van Beers, and R H Al, and E H Rings, and A W Einerhand, and J Dekker, and H A Büller
July 1998, Journal of pediatric gastroenterology and nutrition,
E H Van Beers, and R H Al, and E H Rings, and A W Einerhand, and J Dekker, and H A Büller
June 1993, The Biochemical journal,
E H Van Beers, and R H Al, and E H Rings, and A W Einerhand, and J Dekker, and H A Büller
December 1998, The Journal of biological chemistry,
E H Van Beers, and R H Al, and E H Rings, and A W Einerhand, and J Dekker, and H A Büller
December 1991, The Biochemical journal,
E H Van Beers, and R H Al, and E H Rings, and A W Einerhand, and J Dekker, and H A Büller
August 1988, FEBS letters,
E H Van Beers, and R H Al, and E H Rings, and A W Einerhand, and J Dekker, and H A Büller
September 1993, Gastroenterology,
E H Van Beers, and R H Al, and E H Rings, and A W Einerhand, and J Dekker, and H A Büller
February 1996, Experimental cell research,
E H Van Beers, and R H Al, and E H Rings, and A W Einerhand, and J Dekker, and H A Büller
April 2006, Journal of nutritional science and vitaminology,
E H Van Beers, and R H Al, and E H Rings, and A W Einerhand, and J Dekker, and H A Büller
September 1990, Biochimica et biophysica acta,
E H Van Beers, and R H Al, and E H Rings, and A W Einerhand, and J Dekker, and H A Büller
February 1995, Biochimica et biophysica acta,
Copied contents to your clipboard!