Neuronatin mRNA in PC12 cells: downregulation by nerve growth factor. 1996

R Joseph, and W Tsang, and D Dou, and K Nelson, and K Edvardsen
Department of Neurology/K-11, Henry Ford Health Sciences Center, Detroit, MI 48202, USA.

Neuronatin was recently cloned from neonatal rat brain (Biochem, Biophys. Res. Commun., 201 (1994) 1227-1234). In subsequent studies, we noted neuronatin mRNA was brain-specific and that there were two alternatively spliced forms, alpha and beta (Brain Res., 690 (1995) 92-98). Furthermore, on sequencing the human neuronatin gene, it was determined that the alpha-form was encoded by three exons, and the beta-form was encoded by the first and third exons only (Genomics, 33 (1996) 292-297). The middle exon was spliced out in the beta-form. The human neuronatin gene is located in single copy of chromosome 20q 11.2-12 (Brain Res., 723 (1996) 8-22). These studies called for an understanding of the function of this gene. Therefore, we studied the expression of neuronatin in PC12 cells, an established model of neuronal growth and differentiation. Neuronatin mRNA expression was found to be abundant in undifferentiated PC12 cells. Treatment with nerve growth factor (NGF), resulting in neuronal differentiation, was associated with a downregulation of neuronatin mRNA expression. Removal of NGF was associated with a return of neuronatin mRNA levels towards baseline. These effects appear to be specific for NGF as they were not seen with transforming growth factor, epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate or dexamethasone. Although, basic fibroblast growth factor also reduced neuronatin mRNA levels, the effect was less pronounced than with NGF. The NGF-induced decreased in neuronatin mRNA occurred even in the presence of protein and RNA syntheses inhibitors. Of the two spliced forms, only the alpha-form was expressed in PC12 cells. In conclusion, we report the presence of neuronatin mRNA in PC12 cells, and that NGF downregulates its expressions. These findings provide a basis for investigating the role of neuronatin in neuronal growth and differentiation.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011500 Protein Synthesis Inhibitors Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins. Protein Synthesis Antagonist,Protein Synthesis Antagonists,Protein Synthesis Inhibitor,Antagonist, Protein Synthesis,Antagonists, Protein Synthesis,Inhibitor, Protein Synthesis,Inhibitors, Protein Synthesis,Synthesis Antagonist, Protein,Synthesis Inhibitor, Protein
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

R Joseph, and W Tsang, and D Dou, and K Nelson, and K Edvardsen
January 1992, Journal of neuroscience research,
R Joseph, and W Tsang, and D Dou, and K Nelson, and K Edvardsen
September 1985, Proceedings of the National Academy of Sciences of the United States of America,
R Joseph, and W Tsang, and D Dou, and K Nelson, and K Edvardsen
July 1986, Proceedings of the National Academy of Sciences of the United States of America,
R Joseph, and W Tsang, and D Dou, and K Nelson, and K Edvardsen
December 1986, Biochemistry,
R Joseph, and W Tsang, and D Dou, and K Nelson, and K Edvardsen
January 1988, Advances in enzyme regulation,
R Joseph, and W Tsang, and D Dou, and K Nelson, and K Edvardsen
February 1991, Journal of neuroscience research,
R Joseph, and W Tsang, and D Dou, and K Nelson, and K Edvardsen
February 1999, Journal of neuroscience research,
R Joseph, and W Tsang, and D Dou, and K Nelson, and K Edvardsen
September 1983, European journal of biochemistry,
R Joseph, and W Tsang, and D Dou, and K Nelson, and K Edvardsen
March 1983, The Journal of biological chemistry,
R Joseph, and W Tsang, and D Dou, and K Nelson, and K Edvardsen
July 2009, Cytotechnology,
Copied contents to your clipboard!