Three-dimensional structure of the lipoyl domain from the dihydrolipoyl succinyltransferase component of the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli. 1996

P M Ricaud, and M J Howard, and E L Roberts, and R W Broadhurst, and R N Perham
Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, UK.

A sub-gene encoding the lipoyl domain of the dihydrolipoyl succinyltransferase polypeptide chain of the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli was over-expressed and the protein was purified uniformly labelled with 15N. The three-dimensional structure of the domain was determined by means of nuclear magnetic resonance spectroscopy, based on 905 nuclear Overhauser effect inter-proton distance restraints, 42 phi torsion angle restraints and hydrogen bond restraints from 24 slowly exchanging amide protons. The structure of the 80-residue domain is that of a flattened beta-barrel surrounding a hydrophobic core in which Trp22 plays a central role in anchoring two four-stranded sheets together. The polypeptide backbone exhibits a 2-fold axis of quasi-symmetry, with the lipoylation site, Lys43, located at the tip of an exposed beta-turn in one beta-sheet and the N and C-terminal residues close together in space in the other beta-sheet. The atomic r.m.s. distribution about the mean coordinate is 0.46 A for the backbone atoms in the highly structured region and 0.88 A along the entire backbone (residues Ser1 to Asn80), including a less well-defined surface loop and the lipoyl-lysine beta-turn. The structure closely resembles that of the lipoyl domains from pyruvate dehydrogenase complexes, in accord with the existence of strongly conserved residues at critical positions in the domains. The structures of the lipoyl domains throw light on the requirements for the specificity of reductive acylation of their pendant lipoyl groups in the parent 2-oxo acid dehydrogenase complexes; an important aspect of the mechanisms underlying active site coupling and substrate channelling.

UI MeSH Term Description Entries
D007655 Ketoglutarate Dehydrogenase Complex 2-Keto-4-Hydroxyglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase Complex,Oxoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase Complex,2 Keto 4 Hydroxyglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase Complex,Complex, 2-Oxoglutarate Dehydrogenase,Complex, Ketoglutarate Dehydrogenase,Complex, alpha-Ketoglutarate Dehydrogenase,Dehydrogenase Complex, 2-Oxoglutarate,Dehydrogenase Complex, Ketoglutarate,Dehydrogenase Complex, alpha-Ketoglutarate,Dehydrogenase, 2-Keto-4-Hydroxyglutarate,Dehydrogenase, 2-Oxoglutarate,Dehydrogenase, Oxoglutarate,Dehydrogenase, alpha-Ketoglutarate,alpha Ketoglutarate Dehydrogenase,alpha Ketoglutarate Dehydrogenase Complex
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000217 Acyltransferases Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3. Acyltransferase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

P M Ricaud, and M J Howard, and E L Roberts, and R W Broadhurst, and R N Perham
April 1995, Journal of molecular biology,
P M Ricaud, and M J Howard, and E L Roberts, and R W Broadhurst, and R N Perham
February 1993, Journal of molecular biology,
P M Ricaud, and M J Howard, and E L Roberts, and R W Broadhurst, and R N Perham
May 2007, Journal of molecular biology,
P M Ricaud, and M J Howard, and E L Roberts, and R W Broadhurst, and R N Perham
July 1998, Journal of molecular biology,
P M Ricaud, and M J Howard, and E L Roberts, and R W Broadhurst, and R N Perham
August 1996, Journal of molecular biology,
P M Ricaud, and M J Howard, and E L Roberts, and R W Broadhurst, and R N Perham
September 1979, Proceedings of the National Academy of Sciences of the United States of America,
P M Ricaud, and M J Howard, and E L Roberts, and R W Broadhurst, and R N Perham
May 2014, The Journal of biological chemistry,
P M Ricaud, and M J Howard, and E L Roberts, and R W Broadhurst, and R N Perham
December 1981, The Biochemical journal,
P M Ricaud, and M J Howard, and E L Roberts, and R W Broadhurst, and R N Perham
March 1990, FEBS letters,
Copied contents to your clipboard!