In vitro gene delivery by degraded polyamidoamine dendrimers. 1996

M X Tang, and C T Redemann, and F C Szoka
School of Pharmacy, University of California, San Francisco 94143-0446, USA.

Transfection of cultured cells has been reported using complexes between DNA and spherical cationic polyamidoamine polymers (Starburst dendrimers) that consist of primary amines on the surface and tertiary amines in the interior. The transfection activity of the dendrimers is dramatically enhanced (> 50-fold) by heat treatment in a variety of solvolytic solvents, e.g., water or butanol. Such treatment induces significant degradation of the dendrimer at the amide linkage, resulting in a heterodisperse population of compounds with molecular weights ranging from the very low (< 1500 Da) to several tens of kilodaltons. The compound facilitating transfection is the high molecular weight component of the degraded product and is denoted as a "fractured" dendrimer. Transfection activity is related both to the initial size of the dendrimer and its degree of degradation. Fractured dendrimers exhibit an increased apparent volume change as measured by an increase in the reduced viscosity upon protonation of the terminal amines as pH is reduced from 10.5 to 7.2 whereas intact dendrimers do not. Dendrimers with defective branching have been synthesized and also have improved transfection activity compared to that of the intact dendrimers. For a series of heat-treated dendrimers we observe a correlation between transfection activity and the degree of flexibility, computed with a random cleavage simulation of the degradation process. We suggest that the increased transfection after the heating process is principally due to the increase in flexibility that enables the fractured dendrimer to be compact when complexed with DNA and swell when released from DNA.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

M X Tang, and C T Redemann, and F C Szoka
January 2005, Biomacromolecules,
M X Tang, and C T Redemann, and F C Szoka
May 2008, Journal of biomaterials applications,
M X Tang, and C T Redemann, and F C Szoka
January 2007, Bioconjugate chemistry,
M X Tang, and C T Redemann, and F C Szoka
February 2005, Journal of pharmaceutical sciences,
M X Tang, and C T Redemann, and F C Szoka
May 2015, Drug development and industrial pharmacy,
M X Tang, and C T Redemann, and F C Szoka
August 2010, Biomacromolecules,
M X Tang, and C T Redemann, and F C Szoka
January 2000, The journal of gene medicine,
M X Tang, and C T Redemann, and F C Szoka
December 2017, Experimental and therapeutic medicine,
M X Tang, and C T Redemann, and F C Szoka
March 2007, Journal of pharmaceutical sciences,
Copied contents to your clipboard!