Free radicals produced during the oxidation of hydrazines by hypochlorous acid. 1996

D C Goodwin, and S D Aust, and T A Grover
Biotechnology Center, Utah State University, Logan 84322-4700, USA.

Hypochlorous acid (HOCl) derived from activated neutrophils and monocytes has been implicated in the activation of hydrazine-containing drugs to toxic intermediates. However, reactive intermediates formed during the reaction between HOCl and these drugs have not been identified. We investigated the oxidation of the hydrazine derivatives isoniazid, iproniazid, and hydralazine by HOCl. The reaction between HOCl and all three hydrazines resulted in O2 consumption, indicating that free radicals were produced, but the rate and extent of O2 consumption were different for each hydrazine. Moreover, reduction of nitroblue tetrazolium (NBT) was observed only during the reaction between HOCl and isoniazid, suggesting that different radical species may be produced from HOCl reaction with each hydrazine. The oxidation of iproniazid by HOCl in the presence of the radical trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) resulted in the formation of a carbon-centered radical adduct. In contrast, the reaction between HOCl and hydralazine resulted in the formation of a nitrogen-centered DMPO radical adduct. The oxidation of isoniazid by HOCl resulted in the formation of two oxygen-centered radical adducts, DMPO-OOH and DMPO-OH. Myeloperoxidase-catalyzed oxidation of these hydrazines in the presence of Cl- and H2O2 produced radical species that were identical to those observed with HOCl. Thus, some of the toxic side effects of these drugs may be the result of the production of free-radical intermediates from reaction with neutrophil-derived oxidants, such as HOCl. The types of radicals produced and the consequences of generating these reactive species are discussed.

UI MeSH Term Description Entries
D006997 Hypochlorous Acid An oxyacid of chlorine (HClO) containing monovalent chlorine that acts as an oxidizing or reducing agent. Hypochlorite,Hypochlorous Acids
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D007538 Isoniazid Antibacterial agent used primarily as a tuberculostatic. It remains the treatment of choice for tuberculosis. Isonicotinic Acid Hydrazide,Ftivazide,Isonex,Isonicotinic Acid Vanillylidenehydrazide,Phthivazid,Phthivazide,Tubazide,Acid Vanillylidenehydrazide, Isonicotinic,Hydrazide, Isonicotinic Acid,Vanillylidenehydrazide, Isonicotinic Acid
D009580 Nitroblue Tetrazolium Colorless to yellow dye that is reducible to blue or black formazan crystals by certain cells; formerly used to distinguish between nonbacterial and bacterial diseases, the latter causing neutrophils to reduce the dye; used to confirm diagnosis of chronic granulomatous disease. Nitro-BT,Nitrotetrazolium Blue,Tetrazolium Nitroblue,Blue, Nitrotetrazolium,Nitroblue, Tetrazolium,Tetrazolium, Nitroblue
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006834 Hydrazines Substituted derivatives of hydrazine (formula H2N-NH2). Hydrazide
D016877 Oxidants Electron-accepting molecules in chemical reactions in which electrons are transferred from one molecule to another (OXIDATION-REDUCTION). Oxidant,Oxidizing Agent,Oxidizing Agents,Agent, Oxidizing,Agents, Oxidizing

Related Publications

D C Goodwin, and S D Aust, and T A Grover
August 2010, Chemistry Central journal,
D C Goodwin, and S D Aust, and T A Grover
January 1991, Advances in experimental medicine and biology,
D C Goodwin, and S D Aust, and T A Grover
December 2013, Biochemistry. Biokhimiia,
D C Goodwin, and S D Aust, and T A Grover
March 2001, Journal of cataract and refractive surgery,
D C Goodwin, and S D Aust, and T A Grover
November 1987, FEBS letters,
D C Goodwin, and S D Aust, and T A Grover
January 2002, Luminescence : the journal of biological and chemical luminescence,
D C Goodwin, and S D Aust, and T A Grover
April 1992, Circulatory shock,
D C Goodwin, and S D Aust, and T A Grover
August 2000, Biochemical and biophysical research communications,
D C Goodwin, and S D Aust, and T A Grover
June 1993, Radiation research,
D C Goodwin, and S D Aust, and T A Grover
June 1994, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!