Rotational behaviour and neurochemical changes in unilateral N-methyl-norsalsolinol and 6-hydroxydopamine lesioned rats. 1996

A Moser, and F Siebecker, and F Nobbe, and V Böhme
Department of Neurology, Medical University of Lübeck, Germany.

In earlier studies the tetrahydroisoquinoline derivative N-methyl-norsalsolinol (2-MDTIQ) was discovered in lumbar cerebrospinal fluid and brain of patients with Parkinson's disease. To establish whether 2-MDTIQ is toxic to the dopaminergic system, 2-MDTIQ or 6-hydroxydopamine (6-OHDA) were stereotactically injected into the left medial forebrain bundle, and rotational behaviour and neurochemical changes were measured in female Wistar rats. Three weeks after lesioning rotational behaviour was assessed after administration of S(+)-amphetamine (5 mg/kg) and apomorphine (0.1 mg/kg). As expected, after 6-OHDA lesions S(+)-amphetamine as well as apomorphine markedly induced rotations ipsiversive or contraversive, respectively, to the lesion, and dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels of the ipsilateral caudate-putamen and accumbens nucleus decreased. Although a decline in the dopamine/DOPAC ratio indicated an enhanced dopamine turnover, striatal monoamine oxidase (MAO) activity remained unchanged when tested in vitro. After a 2-MDTIQ lesion S(+)-amphetamine also caused animals to rotate strongly, ipsiversive to the lesion, but there was no response to apomorphine administration. This 2-MDTIQ effect was not due to a reduction in dopamine metabolism of the ipsilateral caudate-putamen or mesencephalic structures, or, for example, a partial neurodegeneration of dopaminergic neurons, since dopamine metabolites levels and MAO activity were nearly unchanged. Thus, we suggest that 2-MDTIQ interacts with the effect of S(+)-amphetamine and probably leads to an insensitivity of the dopamine uptake/transporter system to S(+)-amphetamine in dopaminergic nigrostriatal neurons. An effect of 2-MDTIQ on presynaptic membranes of dopaminergic synaptosomes has never been reported, but will be an objective of our further studies.

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D005260 Female Females
D000661 Amphetamine A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE. Desoxynorephedrin,Levoamphetamine,Phenopromin,l-Amphetamine,Amfetamine,Amphetamine Sulfate,Amphetamine Sulfate (2:1),Centramina,Fenamine,Mydrial,Phenamine,Thyramine,levo-Amphetamine,Sulfate, Amphetamine,l Amphetamine,levo Amphetamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001058 Apomorphine A derivative of morphine that is a dopamine D2 agonist. It is a powerful emetic and has been used for that effect in acute poisoning. It has also been used in the diagnosis and treatment of parkinsonism, but its adverse effects limit its use. Apokinon,Apomorphin-Teclapharm,Apomorphine Chloride,Apomorphine Hydrochloride,Apomorphine Hydrochloride Anhydrous,Apomorphine Hydrochloride, Anhydrous,Apomorphine Hydrochloride, Hemihydrate,Britaject,Apomorphin Teclapharm
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D012399 Rotation Motion of an object in which either one or more points on a line are fixed. It is also the motion of a particle about a fixed point. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Clinorotation,Clinorotations,Rotations

Related Publications

A Moser, and F Siebecker, and F Nobbe, and V Böhme
December 2006, Acta medica Okayama,
A Moser, and F Siebecker, and F Nobbe, and V Böhme
April 1995, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
A Moser, and F Siebecker, and F Nobbe, and V Böhme
September 1995, Brain research,
A Moser, and F Siebecker, and F Nobbe, and V Böhme
March 1987, Life sciences,
A Moser, and F Siebecker, and F Nobbe, and V Böhme
August 1996, Brain research,
A Moser, and F Siebecker, and F Nobbe, and V Böhme
March 2010, Parkinson's disease,
A Moser, and F Siebecker, and F Nobbe, and V Böhme
June 2010, Brain research,
A Moser, and F Siebecker, and F Nobbe, and V Böhme
June 1983, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!