Rhythmic firing of medial septum non-cholinergic neurons. 1996

M Serafin, and S Williams, and A Khateb, and P Fort, and M Mühlethaler
Departement de Physiologie, CMU, Genève, Switzerland.

The presence of theta rhythm (5-10 Hz) in the hippocampus has been shown to enable long-term potentiation, a synaptic mechanism which has been proposed to underlie learning and memory. Medial septum cholinergic and GABAergic neurons that project to the hippocampus have been hypothesized to play conjointly a major role in the genesis of this rhythm. Building upon previous studies that have established the electrophysiological criteria for distinguishing cholinergic and non-cholinergic neurons in this area, it is demonstrated here that medial septum non-cholinergic neurons, putatively GABAergic, have the ability to discharge in rhythmic clusters of action potentials occurring at frequencies ranging from 1 to 8 Hz. Within the clusters, the firing frequency of action potentials varied between 13 and 57 Hz in a voltage-dependent manner. In addition, small voltage-dependent subthreshold membrane potential oscillations (16-54 Hz) were observed between clusters. Both subthreshold oscillations and clusters were eliminated by tetrodotoxin at 1 microM. These results indicate that non-cholinergic medial septum neurons could convey to the hippocampus not only theta but also higher frequency rhythmicity in the beta-gamma range (20-60 Hz).

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012686 Septal Nuclei Neural nuclei situated in the septal region. They have afferent and cholinergic efferent connections with a variety of FOREBRAIN and BRAIN STEM areas including the HIPPOCAMPAL FORMATION, the LATERAL HYPOTHALAMUS, the tegmentum, and the AMYGDALA. Included are the dorsal, lateral, medial, and triangular septal nuclei, septofimbrial nucleus, nucleus of diagonal band, nucleus of anterior commissure, and the nucleus of stria terminalis. Bed Nucleus of Stria Terminalis,Nucleus of Anterior Commissure,Nucleus of Diagonal Band,Nucleus of Stria Terminalis,Septofimbrial Nucleus,Dorsal Septal Nucleus,Lateral Septal Nucleus,Lateral Septum Nucleus,Medial Septal Nucleus,Medial Septum Nucleus,Nucleus Interstitialis Striae Terminalis,Nucleus Lateralis Septi,Nucleus Septalis Lateralis,Nucleus Septi Lateralis,Nucleus Striae Terminalis,Nucleus Triangularis Septi,Nucleus of the Stria Terminalis,Septal Nuclear Complex,Triangular Septal Nucleus,Anterior Commissure Nucleus,Complex, Septal Nuclear,Complices, Septal Nuclear,Diagonal Band Nucleus,Laterali, Nucleus Septalis,Laterali, Nucleus Septi,Lateralis Septi, Nucleus,Lateralis Septus, Nucleus,Lateralis, Nucleus Septalis,Lateralis, Nucleus Septi,Nuclear Complex, Septal,Nuclear Complices, Septal,Nuclei, Septal,Nucleus Lateralis Septus,Nucleus Septalis Laterali,Nucleus Septi Laterali,Nucleus Striae Terminali,Nucleus Triangularis Septus,Nucleus, Dorsal Septal,Nucleus, Lateral Septal,Nucleus, Lateral Septum,Nucleus, Medial Septal,Nucleus, Medial Septum,Nucleus, Septofimbrial,Nucleus, Triangular Septal,Septal Nuclear Complices,Septal Nucleus, Dorsal,Septal Nucleus, Lateral,Septal Nucleus, Medial,Septal Nucleus, Triangular,Septalis Laterali, Nucleus,Septalis Lateralis, Nucleus,Septi Laterali, Nucleus,Septi Lateralis, Nucleus,Septi, Nucleus Lateralis,Septi, Nucleus Triangularis,Septum Nucleus, Lateral,Septum Nucleus, Medial,Septus, Nucleus Lateralis,Septus, Nucleus Triangularis,Stria Terminalis Nucleus,Striae Terminali, Nucleus,Striae Terminalis, Nucleus,Terminali, Nucleus Striae,Terminalis, Nucleus Striae,Triangularis Septi, Nucleus,Triangularis Septus, Nucleus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Serafin, and S Williams, and A Khateb, and P Fort, and M Mühlethaler
April 1990, Brain research,
M Serafin, and S Williams, and A Khateb, and P Fort, and M Mühlethaler
June 2019, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Serafin, and S Williams, and A Khateb, and P Fort, and M Mühlethaler
May 2006, Journal of neurochemistry,
M Serafin, and S Williams, and A Khateb, and P Fort, and M Mühlethaler
April 1998, Alcohol (Fayetteville, N.Y.),
M Serafin, and S Williams, and A Khateb, and P Fort, and M Mühlethaler
November 1988, Neuroscience letters,
M Serafin, and S Williams, and A Khateb, and P Fort, and M Mühlethaler
November 2023, Neural regeneration research,
M Serafin, and S Williams, and A Khateb, and P Fort, and M Mühlethaler
August 1994, Brain research,
M Serafin, and S Williams, and A Khateb, and P Fort, and M Mühlethaler
August 2008, The Journal of physiology,
M Serafin, and S Williams, and A Khateb, and P Fort, and M Mühlethaler
April 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Serafin, and S Williams, and A Khateb, and P Fort, and M Mühlethaler
August 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!