Improved technique for immunoelectron microscopy. How to prepare epoxy resin to obtain approximately the same immunogold labeling for epoxy sections as for acrylic sections without any etching. 1996

S H Brorson, and F Skjørten
Department of Pathology, Ullevål Hospital, Oslo, Norway.

The purpose of this study was to improve the immunogold labeling of epoxy sections and to increase our knowledge of the mechanism for how antigens become immunolabeled on resin sections. Tissues from pancreas, thyroid and fibrin clots were embedded in an epoxy resin and LR-White. The epoxy mixture was composed and treated in different ways, especially with respect to altered amounts of accelerator (DMP-30). Immunogold labeling was performed with anti-glucagon, anti-thyroglobulin and anti-fibrinogen respectively. By increasing the amount of DMP-30 in the infiltration steps and/or embedding step, we observed a significant rise in the immunogold labeling. For the largest proteins the labeling was up to 8 times more intense than the labeling achieve with epoxy sections produced by 'normal' amount of accelerator in the embedding mixture and without accelerator in the infiltration mixture. For the smallest protein, glucagon, the differences were almost absent. The labeling of thyroglobulin and fibrinogen on the high accelerator epoxy sections was up to 70% of the labeling of LR-White sections, while conventional epoxy sections showed a labeling of 5-10% of that obtained with acrylic labeling. The cutting qualities of the high-accelerator blocks were similar to that of conventional epoxy embedding. The ultrastructure of the sections from the high-accelerator epoxy blocks were good, and the contrast was improved when tannic acid was used as enhancer. Our theory to explain the improved labeling is that the antigens are less tightly incorporated in the polymer network when the concentration of the accelerator is increased. The method outlined significantly improves the detectability of antigens on epoxy sections, which is the embedding resin routinely used in many laboratories.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004853 Epoxy Resins Polymeric resins derived from OXIRANES and characterized by strength and thermosetting properties. Epoxy resins are often used as dental materials. Epoxy Resin,Resin, Epoxy,Resins, Epoxy
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000180 Acrylic Resins Polymers of high molecular weight which are derived from acrylic acid, methacrylic acid or other related compounds and are capable of being molded and then hardened to form useful components. Acrylic Resin,Resin, Acrylic,Resins, Acrylic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen
D016253 Microscopy, Immunoelectron Microscopy in which the samples are first stained immunocytochemically and then examined using an electron microscope. Immunoelectron microscopy is used extensively in diagnostic virology as part of very sensitive immunoassays. Immunoelectron Microscopy,Microscopy, Immuno-Electron,Immuno-Electron Microscopies,Immuno-Electron Microscopy,Immunoelectron Microscopies,Microscopies, Immuno-Electron,Microscopies, Immunoelectron,Microscopy, Immuno Electron
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

S H Brorson, and F Skjørten
September 1999, Biotechnic & histochemistry : official publication of the Biological Stain Commission,
S H Brorson, and F Skjørten
March 1995, Biotechnic & histochemistry : official publication of the Biological Stain Commission,
S H Brorson, and F Skjørten
January 1975, Journal of microscopy,
S H Brorson, and F Skjørten
January 1986, The American journal of anatomy,
S H Brorson, and F Skjørten
March 1989, Stain technology,
Copied contents to your clipboard!