Reconstituted Cl- pump protein: a novel ion(Cl-)-motive ATPase. 1996

G A Gerencser, and K R Purushotham
Department of Physiology, College of Medicine, University of Florida, Gainesville 32610, USA.

Cl- absorption by the Aplysia californica foregut is effected through an active Cl- transport mechanism located in the basolateral membrane of the epithelial absorptive cells. These basolateral membranes contain both Cl(-)-stimulated ATPase and ATP-dependent Cl- transport activities which can be incorporated into liposomes via reconstitution. Utilizing the proteoliposomal preparation, it was demonstrated that ATP, and its subsequent hydrolysis, Mg2+, Cl-, and a pH optimum of 7.8 were required to generate maximal intraliposomal Cl- accumulation, electrical negativity, and ATPase activity. Additionally, an inwardly-directed valinomycin-induced K+ diffusion potential, making the liposome interior electrically positive, enhanced both ATP-driven Cl- accumulation and electrical potential while an outwardly-directed valinomycin-induced K+ diffusion potential, making the liposome interior electrically negative, decreased both ATP-driven Cl- accumulation and electrical potential compared with proteoliposomes lacking the ionophore. Either orthovanadate or p-chloromercurobenzene sulfonate inhibited both the ATP-dependent intraliposomal Cl- accumulation, intraliposomal negative potential difference, and also Cl(-)-stimulated ATPase activity. Both aspects of Cl- pump transport kinetics and its associated catalytic component kinetics were the first obtained utilizing a reconstituted transporter protein. These results strongly support the hypothesis that Cl(-)-ATPase actively transports Cl- by an electrogenic process.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002259 Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone A proton ionophore that is commonly used as an uncoupling agent in biochemical studies. Carbonyl Cyanide para-Trifluoromethoxyphenylhydrazone,FCCP,(4-(Trifluoromethoxy)phenyl)hydrazonopropanedinitrile,Carbonyl Cyanide p Trifluoromethoxyphenylhydrazone,Carbonyl Cyanide para Trifluoromethoxyphenylhydrazone,Cyanide p-Trifluoromethoxyphenylhydrazone, Carbonyl,Cyanide para-Trifluoromethoxyphenylhydrazone, Carbonyl,p-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide,para-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G A Gerencser, and K R Purushotham
December 2024, Neural regeneration research,
G A Gerencser, and K R Purushotham
January 1996, Critical reviews in biochemistry and molecular biology,
G A Gerencser, and K R Purushotham
September 2007, Journal of computational electronics,
G A Gerencser, and K R Purushotham
August 2004, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society,
G A Gerencser, and K R Purushotham
August 2018, Journal of receptor and signal transduction research,
G A Gerencser, and K R Purushotham
November 1993, Biochemical and biophysical research communications,
G A Gerencser, and K R Purushotham
June 1977, Biochimica et biophysica acta,
G A Gerencser, and K R Purushotham
July 1983, FEBS letters,
G A Gerencser, and K R Purushotham
July 2021, Acta biomaterialia,
Copied contents to your clipboard!