Platelet-activating factor and nitric oxide mediate microvascular permeability in ischemia-reperfusion injury. 1996

A A Noel, and R W Hobson, and W N Durán
Department of Surgery, UMDNJ-New Jersey Medical School, Newark 07103-2714, USA.

Increased microvascular permeability is a hallmark of ischemia-reperfusion (I/R) injury. We hypothesized that platelet-activating factor (PAF) and nitric oxide (NO) are involved in the extrvasation of macromolecules in I/R injury. To block endogenous PAF, we used a PAF-receptor antagonist (WEB 2086; 2 mg/kg, i.v). To inhibit endogenous nitric oxide, we employed L-NG-monomethyl arginine (10(-5) M L-NMMA), a NO synthase inhibitor. We assessed microvascular permeability to FITC-dextran 150 by measuring changes in integrated optical intensity (delta IOI) using computer-assisted image analysis in the hamster cheek pouch. We examined one area of ischemia and one control area in each pouch. Ischemia was induced for 2 hr and was followed by 1 hr of reperfusion. Six groups were investigated. Group 1 (n = 5) had no pharmacologic intervention; Group 2 (n = 5) received WEB 2086 15 min before reperfusion; Group 3 (n = 5) received WEB 2086 at reperfusion; Group 4 (n = 5), WEB 2086 was infused 15 min after the onset of reperfusion. Group 5 (n = 3) received topical L-NMMA (30 min prior to reperfusion and continuously for the remainder of the experiment). Group 6 (n = 3) received both L-NMMA (as in Group 5) and WEB 2086 (administered 15 min after reperfusion). In Group 1, I/R increased the mean (+/- SEM) delta IOI value from 61.5 +/- 11.1 to 127.2 +/- 26.1. WEB 2086 inhibited the increase in delta IOI at each time point. Similarly, the groups given L-NMMA alone and L-NMMA + WEB 2086 showed no difference between ischemic and control groups. Our data demonstrate that (1) PAF and nitric oxide are involved in the permeability changes associated with the microvascular dysfunction of ischemia-reperfusion injury; (2) inhibitors of PAF and nitric oxide synthase are effective in attenuating macromolecular extravasation when given during ischemia or after initiation of reperfusion.

UI MeSH Term Description Entries
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010972 Platelet Activating Factor A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION. AGEPC,Acetyl Glyceryl Ether Phosphorylcholine,PAF-Acether,Phosphorylcholine, Acetyl Glyceryl Ether,1-Alkyl-2-acetyl-sn-glycerophosphocholine,Platelet Aggregating Factor,Platelet Aggregation Enhancing Factor,Platelet-Activating Substance,Thrombocyte Aggregating Activity,1 Alkyl 2 acetyl sn glycerophosphocholine,Aggregating Factor, Platelet,Factor, Platelet Activating,PAF Acether,Platelet Activating Substance
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D002610 Cheek The part of the face that is below the eye and to the side of the nose and mouth. Bucca,Buccas,Cheeks
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015427 Reperfusion Injury Adverse functional, metabolic, or structural changes in tissues that result from the restoration of blood flow to the tissue (REPERFUSION) following ISCHEMIA. Ischemia-Reperfusion Injury,Injury, Ischemia-Reperfusion,Injury, Reperfusion,Reperfusion Damage,Damage, Reperfusion,Injury, Ischemia Reperfusion,Ischemia Reperfusion Injury,Ischemia-Reperfusion Injuries,Reperfusion Damages,Reperfusion Injuries

Related Publications

A A Noel, and R W Hobson, and W N Durán
September 1995, Microvascular research,
A A Noel, and R W Hobson, and W N Durán
May 2009, Anesthesiology,
A A Noel, and R W Hobson, and W N Durán
November 1999, Circulation,
A A Noel, and R W Hobson, and W N Durán
January 2001, The Annals of otology, rhinology, and laryngology,
A A Noel, and R W Hobson, and W N Durán
September 2000, European journal of pharmacology,
A A Noel, and R W Hobson, and W N Durán
January 1996, Advances in experimental medicine and biology,
A A Noel, and R W Hobson, and W N Durán
January 2000, Hepato-gastroenterology,
A A Noel, and R W Hobson, and W N Durán
February 2004, Cardiovascular research,
A A Noel, and R W Hobson, and W N Durán
June 1998, The Annals of thoracic surgery,
A A Noel, and R W Hobson, and W N Durán
December 2005, Methods and findings in experimental and clinical pharmacology,
Copied contents to your clipboard!