Fatty acid ethyl esters, nonoxidative metabolites of ethanol, accelerate the kinetics of activation of the human brain delayed rectifier K+ channel, Kv1.1. 1996

R A Gubitosi-Klug, and R W Gross
Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Herein we demonstrate that the major metabolites of ethanol in neural tissues, fatty acid ethyl esters, dramatically accelerate the kinetics of the voltage-induced activation of the human brain delayed rectifier potassium channel, Kv1.1. Specifically, the external application of ethyl oleate (20 microM) to Sf9 cells expressing the recombinant Kv1.1 channel resulted in a decrease in the rise times of the macroscopic current (e.g. from 51.7 +/- 13.1 to 12.8 +/- 3.0 ms at 0 mV for 10-90% rise times) and a 10-mV hyperpolarizing shift (at 0 mV) in the voltage dependence of channel activation. These effects were dose-dependent (half-maximal effect at 7 microM), saturable and specific (i.e. fatty acid methyl esters were without effect). Although application of either ethanol or oleic acid alone did not result in alterations of the activation kinetics, the concomitant application of ethanol and oleic acid reproduced the effects of fatty acid ethyl esters with a temporal course which paralleled the intracellular accumulation of fatty acid ethyl esters in Sf9 cells. Moreover, application of fatty acid ethyl esters (but not ethanol) to rat hippocampal cells in culture produced similar effects on hippocampal delayed rectifier currents. Collectively, these results demonstrate that pathophysiologically relevant concentrations of metabolites of ethanol, fatty acid ethyl esters, modulate the function of a prototypic neuronal ion channel and thus likely contribute to the pathophysiologic sequelae of ethanol abuse in excitable tissues.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004952 Esters Compounds derived from organic or inorganic acids in which at least one hydroxyl group is replaced by an –O-alkyl or another organic group. They can be represented by the structure formula RCOOR’ and are usually formed by the reaction between an acid and an alcohol with elimination of water. Ester
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R A Gubitosi-Klug, and R W Gross
January 1998, Addiction biology,
R A Gubitosi-Klug, and R W Gross
December 2005, Biochimica et biophysica acta,
R A Gubitosi-Klug, and R W Gross
July 1997, The American journal of physiology,
R A Gubitosi-Klug, and R W Gross
July 1982, Proceedings of the National Academy of Sciences of the United States of America,
R A Gubitosi-Klug, and R W Gross
June 2003, American journal of clinical pathology,
R A Gubitosi-Klug, and R W Gross
January 1995, Prostaglandins, leukotrienes, and essential fatty acids,
R A Gubitosi-Klug, and R W Gross
April 1987, The Journal of biological chemistry,
R A Gubitosi-Klug, and R W Gross
February 1993, Alcoholism, clinical and experimental research,
Copied contents to your clipboard!