Translational coupling in the Escherichia coli operon encoding translation initiation factor IF3 and ribosomal proteins L20 and L35. 1996

C Chiaruttini, and M Milet, and M de Smit, and M Springer
UPR 9073, Institut de Biologie Physico-Chimique, Paris, France.

The Escherichia coli IF3-L35-L20 operon encodes translation initiation factor IF3 and the ribosomal proteins L35 and L20, respectively. The expression of the genes encoding the two ribosomal proteins is negatively regulated at the translational level by L20, which acts at an operator located within the IF3 gene and just upstream of the L35 gene. We have previously shown that L20 directly represses the expression of the L35 gene, and indirectly that of the L20 gene, via translational coupling. On the basis of mutational analysis and in vitro RNA structure probing experiments, we proposed that a large secondary structure in which the translation initiation site of the L20 gene is sequestered by base-pairing, is responsible for coupling. The ribosome binding site of the L20 gene becomes available when the secondary structure is melted by ribosomes translating the L35 mRNA. Here we describe that this secondary structure forms in vivo by showing that single mutations in either strand reduce coupling and that compensatory mutations that re-establish pairing also re-establish coupling. In vitro 'toeprinting' analysis enabled us to show that the wild-type inhibitory secondary structure directly blocks ribosome binding to the ribosome binding site of rpIT.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010448 Peptide Initiation Factors Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION. Initiation Factors,Initiation Factor,Factors, Peptide Initiation,Initiation Factors, Peptide
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

C Chiaruttini, and M Milet, and M de Smit, and M Springer
January 2008, Journal of molecular biology,
C Chiaruttini, and M Milet, and M de Smit, and M Springer
April 1996, Molecular & general genetics : MGG,
C Chiaruttini, and M Milet, and M de Smit, and M Springer
November 1984, Proceedings of the National Academy of Sciences of the United States of America,
C Chiaruttini, and M Milet, and M de Smit, and M Springer
August 1976, Journal of molecular biology,
C Chiaruttini, and M Milet, and M de Smit, and M Springer
June 1991, Journal of bacteriology,
C Chiaruttini, and M Milet, and M de Smit, and M Springer
January 1982, Biochemical Society symposium,
C Chiaruttini, and M Milet, and M de Smit, and M Springer
April 1999, Proceedings of the National Academy of Sciences of the United States of America,
C Chiaruttini, and M Milet, and M de Smit, and M Springer
April 1999, Molecular microbiology,
C Chiaruttini, and M Milet, and M de Smit, and M Springer
October 1993, Journal of bacteriology,
Copied contents to your clipboard!