A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. 1996

I Ha, and B Wightman, and G Ruvkun
Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.

The Caenorhabditis elegans heterochronic gene lin-14 generates a temporal gradient of the LIN-14 proteins to control stage-specific patterns of cell lineage during development. Down-regulation of LIN-14 is mediated by the lin-14 3' untranslated region (UTR), which bears seven sites that are complementary to the regulatory lin-4 RNA. Here we report molecular and genetic evidence that RNA duplexes between the lin-4 and lin-14 RNAs form in vivo and are necessary for LIN-14 temporal gradient generation. lin-4 RNA binds in vitro to a lin-14 mRNA bearing the seven lin-4 complementary sites but not to a lin-14 mRNA bearing point mutations in these sites. In vivo, the lin-4 complementary regions are necessary for lin-14 3' UTR-mediated temporal gradient formation. Based on lin-14 3' UTR sequence comparisons between C. elegans and C. briggsae, four of the seven lin-4/lin-14 RNA duplexes are predicted to bulge a lin-4 C residue, and three sites are predicted to form nonbulged RNA duplexes. Reporter genes bearing multimerized bulged C lin-4 binding sites show almost wild-type temporal gradient formation, whereas those bearing multimerized nonbulged lin-4 binding sites do not form a temporal gradient. Paradoxically, lin-4 RNA binds in vitro to nonbulged lin-14 RNA more avidly than to the bulged lin-14 RNA. This suggests that a specific secondary structure of lin-4/lin-14 RNA duplex that may be recognized by an accessory protein, rather than an RNA duplex per se, is required in vivo for the generation of the LIN-14 temporal gradient.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D015801 Helminth Proteins Proteins found in any species of helminth. Helminth Protein,Protein, Helminth,Proteins, Helminth
D017124 Conserved Sequence A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences. Conserved Sequences,Sequence, Conserved,Sequences, Conserved

Related Publications

I Ha, and B Wightman, and G Ruvkun
August 2010, Developmental biology,
I Ha, and B Wightman, and G Ruvkun
March 1989, Genetics,
I Ha, and B Wightman, and G Ruvkun
September 1998, Nature,
I Ha, and B Wightman, and G Ruvkun
February 2009, Developmental dynamics : an official publication of the American Association of Anatomists,
I Ha, and B Wightman, and G Ruvkun
March 2016, Cell reports,
I Ha, and B Wightman, and G Ruvkun
December 2006, Genetics,
Copied contents to your clipboard!