Recurrent axon collaterals of corticothalamic projection neurons in rat primary somatosensory cortex contribute to excitatory and inhibitory feedback-loops. 1996

J F Staiger, and K Zilles, and T F Freund
Institute for Experimental Medicine, Hungarian Academy of Science, Budapest, Hungary. jochen@hirn.uni-duesseldorf.de

Intrinsic circuitry within the primary somatosensory cortex of the rat was examined in a combined light and electron microscope study. Corticothalamic projection neurons were retrogradely labeled by applying Phaseolus vulgaris leucoagglutinin (PHA-L) into the ventro-posteromedial thalamic nucleus (VPM). Most labeled neurons were pyramidal cells of layer VI. Postsynaptic targets of recurrent axon collaterals originating from these neurons were assessed in layers IV and V. Single labeled cells, complete with recurrent collaterals, could be isolated in "barrels" in which no anterograde transport had taken place. These findings were confirmed by first eliminating thalamocortical projections from the VPM with kainic acid and then applying PHA-L into the same nucleus. This procedure led to selective retrograde accumulation of tracer in layer VI pyramidal cells. Reconstructed portions of labeled axonal trees reached layer IV, bringing numerous boutons to layers IV, V and VI. The boutons had characteristic drumstick-like shapes. In order to identify postsynaptic targets, 4 sections of axons stemming from 3 neurons were reembedded and serially sectioned for electron microscopy. The ultrastructure of 72 asymmetric synapses, all belonging to identified collaterals, was analysed. Of the 72 terminals, 44 (59.5%) ended on dendritic spines and 30 on shafts of dendrites (40.5%). Perikarya were not among the targets. In a subset of the sample, the nature of the target neurons was examined by postembedding immunohistochemistry for gamma-amino butyric acid (GABA) after staining for PHA-L. A total of 42 labeled terminals was found in layers IV and V; 23 (55%) were located on GABA-negative spines and 19 (45%) on dendritic shafts. Only 6 (32%) of the shafts were GABA-positive. The remaining ones were either clearly GABA-negative, or labeled only at background levels (n = 13; 68%). The results show that most synapses of corticothalamic projection neurons found in layers IV and V terminate on spines and shafts of GABA-negative dendrites. This finding suggests that such recurrent collaterals are involved in both excitatory and inhibitory feedback mechanisms.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J F Staiger, and K Zilles, and T F Freund
February 1989, Neuroscience letters,
J F Staiger, and K Zilles, and T F Freund
December 1990, The Journal of comparative neurology,
J F Staiger, and K Zilles, and T F Freund
September 2011, Journal of neurophysiology,
J F Staiger, and K Zilles, and T F Freund
August 1987, The Journal of comparative neurology,
J F Staiger, and K Zilles, and T F Freund
December 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J F Staiger, and K Zilles, and T F Freund
August 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J F Staiger, and K Zilles, and T F Freund
June 2010, PLoS biology,
J F Staiger, and K Zilles, and T F Freund
October 2021, Cerebral cortex (New York, N.Y. : 1991),
J F Staiger, and K Zilles, and T F Freund
August 2014, Cerebral cortex (New York, N.Y. : 1991),
Copied contents to your clipboard!