Phospholipase A2: a potentially important determinant of adenosine triphosphate levels during hypoxic-reoxygenation tubular injury. 1996

R A Zager, and D S Conrad, and K Burkhart
Department of Medicine, University of Washington, Seattle, USA.

During the course of O2 deprivation-induced proximal tubular injury, profound alterations in ATP homeostasis exist. This study sought to characterize direct cellular determinants of these abnormalities further. Mouse proximal tubular segments (PTS) were isolated and their adenine nucleotide profiles were determined during hypoxic-reoxygenation injury. The extent of oxidant stress, Ca2+ overload, cytoskeletal disruption, and phospholipase activity were experimentally manipulated by H2O2, Ca2+ ionophore, cytochalasin D, or PLA2 addition, respectively. Hypoxia induced the expected deterioration in adenylate profiles, and a persistent defect in ATP homeostasis was observed during reoxygenation (decreased ATP/ADP ratios and absolute ATP content). H2O2, Ca2+ ionophore, and cytochalasin D had no significant impact on adenylate profiles. However, doses of PLA2 that had no overt effect on normal tubules caused 50 to 75% reductions in both hypoxic and reoxygenation ATP/ADP ratios and absolute ATP content. This effect was completely reproduced by the addition of arachidonic acid (C20:4). No other test fatty acid (C16:0, C18:1, C18:3) reproduced this result. Despite its profound negative impact on hypoxic/reoxygenation ATP concentrations, PLA2 and C20:4 each decreased lethal cell injury (lactate dehydrogenase release), as previously reported. The reductions in ATP and lethal cell injury were not mechanistically linked, because C18:1 and C18:3 reproduced the protective action of C20:4 without altering adenine nucleotide profiles. Ouabain, mannitol, or plasma membrane fatty acid "scavenger" therapy (albumin) did not improve the posthypoxic/PLA2-induced depressions in ATP. The addition of C20:4 caused a modest decrease in posthypoxic tubule oxygen consumption, compared to controls. It was concluded that: (1) PLA2 can be a major determinant of ATP concentrations during both hypoxic and reoxygenation tubular injury; (2) this action is mediated via C20:4 release; (3) a primary defect in mitochondrial ATP production, rather than increased ATP consumption, is likely to be responsible for this action.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

R A Zager, and D S Conrad, and K Burkhart
September 1988, The Journal of clinical investigation,
R A Zager, and D S Conrad, and K Burkhart
January 1988, Zentralblatt fur Gynakologie,
R A Zager, and D S Conrad, and K Burkhart
December 2016, American journal of physiology. Cell physiology,
R A Zager, and D S Conrad, and K Burkhart
December 1983, Archives of surgery (Chicago, Ill. : 1960),
R A Zager, and D S Conrad, and K Burkhart
August 1992, The British journal of surgery,
R A Zager, and D S Conrad, and K Burkhart
December 1988, Journal of pediatric surgery,
R A Zager, and D S Conrad, and K Burkhart
January 1993, Biochimica et biophysica acta,
R A Zager, and D S Conrad, and K Burkhart
June 2017, ACS omega,
R A Zager, and D S Conrad, and K Burkhart
January 2016, Advances in experimental medicine and biology,
Copied contents to your clipboard!