In vitro susceptibility of Mycoplasma hyosynoviae and M. hyorhinis to antimicrobial agents. 1996

H Kobayashi, and N Sonmez, and T Morozumi, and K Mitani, and N Ito, and H Shiono, and K Yamamoto
National Institute of Animal Health, Ibaraki, Japan.

Fifty-four Japanese strains of Mycoplasma hyosynoviae isolated from porkers during 1980 to 1995, and 107 Japanese strains of M. hyorhinis isolated from piglets with respiratory disease during 1991 to 1994 were investigated for the in vitro activities of 13 antimicrobial agents [josamycin, tylosin, spiramycin, kitasamycin, erythromycin, lincomycin (LCM), kanamycin (KM), chloramphenicol (CP), thiamphenicol (TP), tiamulin (TML), oxytetracycline (OTC), chlortetracycline (CTC), and enrofloxacin (ERFX)] by the agar dilution method. Of the drugs tested TML showed the highest activity with minimum inhibitory concentration (MIC) of 0.013 to 0.1 microgram/ m/ (MIC90; 0.05 microgram/ml) against strains of M. hyosynoviae, and 0.2 to 0.78 microgram/ml (MIC90; 0.39 microgram/ml) against strains of M. hyorhinis. ERFX, LCM, most of the 16-membered macrolide antibiotics and tetracyclines also showed low MICs against both mycoplasma species. The susceptibility of KM, CP and TP to the mycoplasmas was considered to be of a secondary grade. Two of 54 strains of M. hyosynoviae, and 11 of 107 strains of M. hyorhinis showed resistance to all 14- and 16-membered macrolide antibiotics tested. Tetracyclines (OTC and CTC) showed a relatively broad MIC distribution from 0.1 to 6.25 micrograms/ml against the M. hyosynoviae strains tested. All of the strains isolated during 1980 to 1984 were susceptible at the concentration of 0.78 microgram/ml or less (MIC90; 0.78 microgram/ml) to OTC and 1.56 micrograms/ml or less (MIC90; 1.56 micrograms/ml) to CTC, while the susceptibility of strains isolated recently, during 1994 to 1995, was more than 0.78 microgram/ml (MIC90; 3.13 micrograms/ml) to OTC, and more than 1.56 micrograms/ml (MIC90; 6.25 micrograms/ml) to CTC.

UI MeSH Term Description Entries
D007612 Kanamycin Antibiotic complex produced by Streptomyces kanamyceticus from Japanese soil. Comprises 3 components: kanamycin A, the major component, and kanamycins B and C, the minor components. Kanamycin A,Kanamycin Sulfate,Kantrex
D008034 Lincomycin An antibiotic produced by Streptomyces lincolnensis var. lincolnensis. It has been used in the treatment of staphylococcal, streptococcal, and Bacteroides fragilis infections. Lincolnensin,Lincomycin, (2S-cis)-Isomer,Epilincomycin,Lincocin,Lincomycin A,Lincomycin Hydrochloride,Lincomycin Monohydrochloride,Lincomycin Monohydrochloride, (2S-cis)-Isomer,Lincomycin Monohydrochloride, (L-threo)-Isomer,Lincomycin Monohydrochloride, Hemihydrate,Lincomycin, (L-threo)-Isomer,Hemihydrate Lincomycin Monohydrochloride
D009174 Mycoplasma A genus of gram-negative, mostly facultatively anaerobic bacteria in the family MYCOPLASMATACEAE. The cells are bounded by a PLASMA MEMBRANE and lack a true CELL WALL. Its organisms are pathogens found on the MUCOUS MEMBRANES of humans, ANIMALS, and BIRDS. Eperythrozoon,Haemobartonella,Mycoplasma putrefaciens,PPLO,Pleuropneumonia-Like Organisms,Pleuropneumonia Like Organisms
D009175 Mycoplasma Infections Infections with species of the genus MYCOPLASMA. Eperythrozoonosis,Infections, Mycoplasma,Eperythrozoonoses,Infection, Mycoplasma,Mycoplasma Infection
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D004224 Diterpenes Twenty-carbon compounds derived from MEVALONIC ACID or deoxyxylulose phosphate. Diterpene,Diterpenes, Cembrane,Diterpenes, Labdane,Diterpenoid,Labdane Diterpene,Norditerpene,Norditerpenes,Norditerpenoid,Cembranes,Diterpenoids,Labdanes,Norditerpenoids,Cembrane Diterpenes,Diterpene, Labdane,Labdane Diterpenes
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004917 Erythromycin A bacteriostatic antibiotic macrolide produced by Streptomyces erythreus. Erythromycin A is considered its major active component. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erycette,Erymax,Erythromycin A,Erythromycin C,Erythromycin Lactate,Erythromycin Phosphate,Ilotycin,T-Stat,Lactate, Erythromycin,Phosphate, Erythromycin,T Stat,TStat
D000077422 Enrofloxacin A fluoroquinolone antibacterial and antimycoplasma agent that is used in veterinary practice. Bay Vp 2674,Bay-Vp-2674,Baytril,Endrofloxicin

Related Publications

H Kobayashi, and N Sonmez, and T Morozumi, and K Mitani, and N Ito, and H Shiono, and K Yamamoto
August 1978, Antimicrobial agents and chemotherapy,
H Kobayashi, and N Sonmez, and T Morozumi, and K Mitani, and N Ito, and H Shiono, and K Yamamoto
September 2000, Veterinary microbiology,
H Kobayashi, and N Sonmez, and T Morozumi, and K Mitani, and N Ito, and H Shiono, and K Yamamoto
January 1972, American journal of veterinary research,
H Kobayashi, and N Sonmez, and T Morozumi, and K Mitani, and N Ito, and H Shiono, and K Yamamoto
November 2014, Veterinary microbiology,
H Kobayashi, and N Sonmez, and T Morozumi, and K Mitani, and N Ito, and H Shiono, and K Yamamoto
January 2019, PloS one,
H Kobayashi, and N Sonmez, and T Morozumi, and K Mitani, and N Ito, and H Shiono, and K Yamamoto
October 1977, Zentralblatt fur Veterinarmedizin. Reihe B. Journal of veterinary medicine. Series B,
H Kobayashi, and N Sonmez, and T Morozumi, and K Mitani, and N Ito, and H Shiono, and K Yamamoto
August 2022, Avian pathology : journal of the W.V.P.A,
H Kobayashi, and N Sonmez, and T Morozumi, and K Mitani, and N Ito, and H Shiono, and K Yamamoto
January 1972, American journal of veterinary research,
H Kobayashi, and N Sonmez, and T Morozumi, and K Mitani, and N Ito, and H Shiono, and K Yamamoto
January 2019, PloS one,
H Kobayashi, and N Sonmez, and T Morozumi, and K Mitani, and N Ito, and H Shiono, and K Yamamoto
December 2019, Veterinary microbiology,
Copied contents to your clipboard!