Subtype-selective induction of wild-type p53 and apoptosis, but not cell cycle arrest, by human somatostatin receptor 3. 1996

K Sharma, and Y C Patel, and C B Srikant
Fraser Laboratories for Diabetes Research McGill University and Royal Victoria Hospital Montreal, Quebec, Canada.

Somatostatin (SST) exerts direct antiproliferative effects in tumor cells, triggering either growth arrest or apoptosis. The cellular actions of SST are transduced through a family of five distinct somatostatin receptor subtypes (SSTR1-5). Whereas growth inhibition has been reported to follow stimulation of protein tyrosine phosphatase via SSTR2 or inhibition of Ca2+ channels via SSTR5 in heterologous expression systems, the subtype selectivity for signaling apoptosis has not been investigated. The tumor suppressor protein p53 and the protooncogene product c-Myc regulate cell cycle progression (growth factors present) or apoptosis (growth factors absent). The p53-induced G1 arrest requires induction of p21, an inhibitor of cyclin-dependent kinases, whereas apoptosis requires induction of Bax. c-Myc is capable of abrogating p53-induced G1 arrest by interfering with the inhibitory action of p21 on cyclin-dependent kinases. We have, therefore, investigated the regulation of p53, p21, c-Myc, and Bax and cellular apoptosis in relation to cell cycle progression in CHO-K1 cells stably expressing individual human SSTR1-5. We demonstrate that apoptosis is signaled uniquely through human SSTR3 and is associated with dephosphorylation-dependent conformational change in wild-type (wt) p53 as well as induction of Bax. The induction of wt p53 occurs rapidly and precedes the onset of apoptosis. We show that the increase in wt p53 is not associated with the induction of p21 or c-Myc when octreotide-induced apoptosis becomes evident, suggesting that such apoptosis does not require G1 arrest and is not c-Myc dependent. These findings provide the first evidence for hormonal induction of wt p53-associated apoptosis via G protein-coupled receptor in a subtype-selective manner.

UI MeSH Term Description Entries
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015282 Octreotide A potent, long-acting synthetic SOMATOSTATIN octapeptide analog that inhibits secretion of GROWTH HORMONE and is used to treat hormone-secreting tumors; DIABETES MELLITUS; HYPOTENSION, ORTHOSTATIC; HYPERINSULINISM; hypergastrinemia; and small bowel fistula. Octreotide Acetate,Compound 201-995,Octreotide Acetate Salt,SAN 201-995,SM 201-995,SMS 201-995,Sandostatin,Sandostatine,Sandoz 201-995,Compound 201 995,Compound 201995,SAN 201 995,SAN 201995,SM 201 995,SM 201995,SMS 201 995,SMS 201995,Sandoz 201 995,Sandoz 201995
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53

Related Publications

K Sharma, and Y C Patel, and C B Srikant
July 1996, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
K Sharma, and Y C Patel, and C B Srikant
September 1995, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
K Sharma, and Y C Patel, and C B Srikant
July 1998, Molecular and cellular biology,
K Sharma, and Y C Patel, and C B Srikant
March 2005, Cell cycle (Georgetown, Tex.),
K Sharma, and Y C Patel, and C B Srikant
November 1999, Oncogene,
K Sharma, and Y C Patel, and C B Srikant
May 1992, Proceedings of the National Academy of Sciences of the United States of America,
K Sharma, and Y C Patel, and C B Srikant
April 1997, Leukemia,
Copied contents to your clipboard!