Motor recovery following spinal cord injury associated with cervical spondylosis: a collaborative study. 1996

R L Waters, and R H Adkins, and I H Sie, and J S Yakura
Rancho Los Amigos Medical Center, Downey, California 90242, USA.

A prospective multicenter study was conducted within the National Model Spinal Cord Injury System program to examine neurological deficits and recovery patterns following spinal cord injury (SCI) in individuals with cervical spondylosis and without a spinal fracture. Nineteen patients were evaluated. Sixty-eight percent presented initially with motor incomplete lesions. Of those who presented with motor incomplete injuries at their initial examination, 69 percent had less deficit in the lower than in the upper extremities, indicative of a central cord syndrome. At follow-up, 12 subjects were unable to ambulate, four required assistance and three were able to ambulate independently. On the average, subjects doubled their initial Asia Motor Score (AMS) scores by one year following injury. Residual upper extremity weakness, however, limited the ability to ambulate. Recovery of motor strength in this group is comparable to that of individuals with incomplete tetraplegia in general but the proportion who regain ambulatory function is less.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D011446 Prospective Studies Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group. Prospective Study,Studies, Prospective,Study, Prospective
D011782 Quadriplegia Severe or complete loss of motor function in all four limbs which may result from BRAIN DISEASES; SPINAL CORD DISEASES; PERIPHERAL NERVOUS SYSTEM DISEASES; NEUROMUSCULAR DISEASES; or rarely MUSCULAR DISEASES. The locked-in syndrome is characterized by quadriplegia in combination with cranial muscle paralysis. Consciousness is spared and the only retained voluntary motor activity may be limited eye movements. This condition is usually caused by a lesion in the upper BRAIN STEM which injures the descending cortico-spinal and cortico-bulbar tracts. Quadriparesis,Spastic Quadriplegia,Tetraplegia,Flaccid Quadriplegia,Flaccid Tetraplegia,Paralysis, Spinal, Quadriplegic,Spastic Tetraplegia,Flaccid Quadriplegias,Flaccid Tetraplegias,Quadripareses,Quadriplegia, Flaccid,Quadriplegia, Spastic,Quadriplegias,Quadriplegias, Flaccid,Quadriplegias, Spastic,Spastic Quadriplegias,Spastic Tetraplegias,Tetraplegia, Flaccid,Tetraplegia, Spastic,Tetraplegias,Tetraplegias, Flaccid,Tetraplegias, Spastic
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002574 Cervical Vertebrae The first seven VERTEBRAE of the SPINAL COLUMN, which correspond to the VERTEBRAE of the NECK. Cervical Spine,Cervical Spines,Spine, Cervical,Vertebrae, Cervical
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

R L Waters, and R H Adkins, and I H Sie, and J S Yakura
January 2014, Progress in brain research,
R L Waters, and R H Adkins, and I H Sie, and J S Yakura
October 1987, Paraplegia,
R L Waters, and R H Adkins, and I H Sie, and J S Yakura
July 1952, Lancet (London, England),
R L Waters, and R H Adkins, and I H Sie, and J S Yakura
October 1986, Paraplegia,
R L Waters, and R H Adkins, and I H Sie, and J S Yakura
February 2009, Respiratory physiology & neurobiology,
R L Waters, and R H Adkins, and I H Sie, and J S Yakura
March 1963, Lancet (London, England),
R L Waters, and R H Adkins, and I H Sie, and J S Yakura
September 2008, Brain research,
R L Waters, and R H Adkins, and I H Sie, and J S Yakura
November 2022, Experimental neurology,
R L Waters, and R H Adkins, and I H Sie, and J S Yakura
February 2012, Experimental neurology,
Copied contents to your clipboard!