The voltage dependence of contraction at different stimulation rates in guinea-pig ventricular myocytes. 1995

S M Harrison
Department of Physiology, University of Leeds, UK.

Ventricular myocytes, isolated from the guinea-pig, were stimulated to contract by 100 ms long voltage clamp pulses from -80 to 0 mV at 0.5 and 3 Hz. An increase in frequency from 0.5 to 3 Hz led to a positive inotropic effect. Contraction-voltage relationships (CVR) were determined at each frequency. The CVR at 0.5 Hz was bell shaped and peaked between 0 and +20 mV, displaying a voltage dependence similar to the L-type Ca2+ current (ICa). At 3 Hz, contractions continued to increase at positive voltages, giving a more sigmoidal CVR. At 0.5 Hz, TTX reduced the size of steady-state contractions to 91 +/- 2% of control values, but had no effect on the shape of the CVR. At 3 Hz, TTX significantly reduced (P < 0.05) the magnitude of contractions at positive voltages (> or = +20 mV) but had no significant effect on contractions at voltages negative to 0 mV. These data illustrate that intracellular sodium activity (aNa(i)) and, in particular, Na+ entry due to the sodium current (INa) are important in determining the voltage dependence of contraction at positive voltages. Thapsigargin (2.5 microM), a blocker of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, reduced the size of steady-state contractions at 0 mV to 65 +/- 7% at 0.5 Hz. Increasing frequency to 3 Hz abolished the positive inotropy seen under control conditions. With thapsigargin present, contractions at 0.5 Hz were reduced at all potentials and the CVR was bell shaped. At 3 Hz the CVR was sigmoidal in shape. Contractions were significantly inhibited by thapsigargin at all potentials, but most significantly at more positive potentials (> or = +20 mV). These data show that, at normal body temperature, the shape of the CVR of guinea-pig ventricular myocytes changes with stimulation rate. Due to the voltage dependence of ICa, contractions evoked at positive voltages at 3 Hz must be supported by other mechanisms. The sensitivity of such contractions to TTX and thapsigargin suggests the involvement of both a Na(+)-dependent process and the SR. One possibility is that when aiNa and the Ca2+ content of the SR are raised at higher stimulation rates, enhanced Ca2+ entry via reverse Na(+)-Ca2+ exchange leads to a direct activation of the myofilaments and, to a lesser extent, the release of Ca2+ from the SR.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D016276 Ventricular Function The hemodynamic and electrophysiological action of the HEART VENTRICLES. Function, Ventricular,Functions, Ventricular,Ventricular Functions

Related Publications

S M Harrison
February 1990, The American journal of physiology,
S M Harrison
April 1987, The Journal of physiology,
S M Harrison
May 1999, Pflugers Archiv : European journal of physiology,
S M Harrison
January 2014, Chinese journal of natural medicines,
Copied contents to your clipboard!