| D007649 |
Ketamine |
A cyclohexanone derivative used for induction of anesthesia. Its mechanism of action is not well understood, but ketamine can block NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE) and may interact with sigma receptors. |
2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone,CI-581,Calipsol,Calypsol,Kalipsol,Ketalar,Ketamine Hydrochloride,Ketanest,Ketaset,CI 581,CI581 |
|
| D008559 |
Memantine |
AMANTADINE derivative that has some dopaminergic effects. It has been proposed as an antiparkinson agent. |
1,3-Dimethyl-5-aminoadamantane,1-Amino-3,5-dimethyladamantane,Axura,D-145,D145,Ebixa,Memantin,Memantine Hydrochloride,Namenda,D 145 |
|
| D008564 |
Membrane Potentials |
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). |
Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences |
|
| D004305 |
Dose-Response Relationship, Drug |
The relationship between the dose of an administered drug and the response of the organism to the drug. |
Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response |
|
| D006624 |
Hippocampus |
A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. |
Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums |
|
| D000547 |
Amantadine |
An antiviral that is used in the prophylactic or symptomatic treatment of influenza A. It is also used as an antiparkinsonian agent, to treat extrapyramidal reactions, and for postherpetic neuralgia. The mechanisms of its effects in movement disorders are not well understood but probably reflect an increase in synthesis and release of dopamine, with perhaps some inhibition of dopamine uptake. |
1-Aminoadamantane,Adamantylamine,Adekin,Aman,Amanta,Amanta-HCI-AZU,Amanta-Sulfate-AZU,Amantadin AL,Amantadin AZU,Amantadin Stada,Amantadin-neuraxpharm,Amantadin-ratiopharm,Amantadina Juventus,Amantadina Llorente,Amantadine Hydrochloride,Amantadine Sulfate,Amixx,Cerebramed,Endantadine,Gen-Amantadine,Infecto-Flu,Infex,Mantadix,Midantan,PMS-Amantadine,Symadine,Symmetrel,Viregyt,Wiregyt,tregor,1 Aminoadamantane,AL, Amantadin,AZU, Amantadin,Amanta HCI AZU,Amanta Sulfate AZU,AmantaHCIAZU,AmantaSulfateAZU,Amantadin neuraxpharm,Amantadin ratiopharm,Amantadinneuraxpharm,Amantadinratiopharm,Gen Amantadine,GenAmantadine,Hydrochloride, Amantadine,Infecto Flu,InfectoFlu,Juventus, Amantadina,Llorente, Amantadina,PMS Amantadine,PMSAmantadine,Stada, Amantadin,Sulfate, Amantadine |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D016194 |
Receptors, N-Methyl-D-Aspartate |
A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. |
N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate |
|
| D016202 |
N-Methylaspartate |
An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA). |
N-Methyl-D-aspartate,NMDA,N-Methyl-D-aspartic Acid,Acid, N-Methyl-D-aspartic,N Methyl D aspartate,N Methyl D aspartic Acid,N Methylaspartate |
|
| D017208 |
Rats, Wistar |
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. |
Wistar Rat,Rat, Wistar,Wistar Rats |
|