Nerve growth factor affects passive avoidance learning and retention in developing mice. 1996

L Ricceri, and E Alleva, and F Chiarotti, and G Calamandrei
Section of Comparative Psychology, Istituto Superiore di Sanità, Rome, Italy.

The present studies investigate the effects of early nerve growth factor (NGF) administration on the ontogenetic profile of learning and retention capacities in mice. The learning paradigm used required the animals to withhold an escape response from a vibrating platform to avoid a punishment (step-down passive avoidance). In Experiment 1, acquisition of step-down passive avoidance was essentially the same in 11- and 15-day-old mice whereas only the latter showed significant retention after 24 h. In younger animals, data pointed to a facilitating effect of familiarization with the test environment. In Experiment 2 ICV NGF treatment on postnatal day 9 increased step-down latencies in both reinforced and nonreinforced pups on day 11. Moreover, NGF mice exposed in nonreinforcement condition on day 11 failed to acquire the avoidance response 24 h later, suggesting that the treatment anticipated the appearance of latent inhibition. Results of Experiment 3, investigating the effects of different durations of preexposure to the test apparatus on passive avoidance acquisition 24 h later, supported the specificity of NGF effects on the emergence of latent inhibition. These findings suggest that neural populations responsive to NGF trophic effect are involved in the maturation of early learning and retention capacities in rodents.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D012153 Retention, Psychology The persistence to perform a learned behavior (facts or experiences) after an interval has elapsed in which there has been no performance or practice of the behavior. Psychological Retention,Retention (Psychology),Psychology Retention,Retention, Psychological
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001362 Avoidance Learning A response to a cue that is instrumental in avoiding a noxious experience. Aversion Behavior,Aversion Learning,Aversive Behavior,Aversive Learning,Avoidance Behavior,Aversion Behaviors,Aversive Behaviors,Avoidance Behaviors,Behavior, Aversion,Behavior, Aversive,Behavior, Avoidance,Behaviors, Aversion,Behaviors, Aversive,Behaviors, Avoidance,Learning, Aversion,Learning, Aversive,Learning, Avoidance
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

L Ricceri, and E Alleva, and F Chiarotti, and G Calamandrei
October 1994, General pharmacology,
L Ricceri, and E Alleva, and F Chiarotti, and G Calamandrei
January 2001, Neurobiology of learning and memory,
L Ricceri, and E Alleva, and F Chiarotti, and G Calamandrei
September 2004, The international journal of neuropsychopharmacology,
L Ricceri, and E Alleva, and F Chiarotti, and G Calamandrei
January 1980, Substance and alcohol actions/misuse,
L Ricceri, and E Alleva, and F Chiarotti, and G Calamandrei
April 1973, Science (New York, N.Y.),
L Ricceri, and E Alleva, and F Chiarotti, and G Calamandrei
April 1998, Brain research,
L Ricceri, and E Alleva, and F Chiarotti, and G Calamandrei
November 1978, Behavioral biology,
L Ricceri, and E Alleva, and F Chiarotti, and G Calamandrei
March 2003, Pharmacological research,
L Ricceri, and E Alleva, and F Chiarotti, and G Calamandrei
December 1973, Physiology & behavior,
L Ricceri, and E Alleva, and F Chiarotti, and G Calamandrei
October 1977, Psychopharmacology,
Copied contents to your clipboard!