Nitric oxide regulates the low-conductance K+ channel in basolateral membrane of cortical collecting duct. 1996

M Lu, and W H Wang
Department of Pharmacology, New York Medical College, Valhalla 10595, USA.

Two types of K+ channels, low conductance (28 pS) and intermediate conductance (85 pS), have been previously identified in the basolateral membrane of the cortical collecting duct (CCD) of the rat kidney (31, 32). In the present study, we used the patch-clamp technique to explore further the mechanism by which the low-conductance K+ channel is regulated. The conductance of the low-conductance K+ channel is inward rectifying, with an inward slope conductance of 30 pS between 0 and -20 mV and an outward slope conductance of 16 pS between 0 and 50 mV in symmetrical 140 mM KCl in the bath and in the pipette. This K+ channel was not sensitive to ATP (10 mM), tetraethylammonium chloride (5 mM), and quinidine (1 mM). Addition of 100 microM N omega-nitro-L-arginine methyl ester (L-NAME) or N omega-(imonoethyl)-L-ornithine (L-NIO), an inhibitor of nitric oxide synthase (NOS), completely blocked channel activity in cell-attached patches. In contrast, addition of 200 microM-D-NAME, which does not block NOS, had no effect on channel activity. The inhibitory effect of L-NAME or L-NIO was fully reversible and completely overcome by addition of exogenous nitric oxide (NO) donors, such as 10 microM S-nitroso-N-acetyl-penicillamine or sodium nitroprusside. Furthermore, addition of 100 microM 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) restored the activity of the channel when it had been inhibited by either L-NAME or L-NIO, indicating that the effect of NO on the channel activity was mediated by a cGMP-dependent pathway. In conclusion, NO plays a key role in the regulation of the basolateral 30-pS K+ channel and the effect of NO on channel activity is mediated by a cGMP-dependent pathway.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D009952 Ornithine An amino acid produced in the urea cycle by the splitting off of urea from arginine. 2,5-Diaminopentanoic Acid,Ornithine Dihydrochloride, (L)-Isomer,Ornithine Hydrochloride, (D)-Isomer,Ornithine Hydrochloride, (DL)-Isomer,Ornithine Hydrochloride, (L)-Isomer,Ornithine Monoacetate, (L)-Isomer,Ornithine Monohydrobromide, (L)-Isomer,Ornithine Monohydrochloride, (D)-Isomer,Ornithine Monohydrochloride, (DL)-Isomer,Ornithine Phosphate (1:1), (L)-Isomer,Ornithine Sulfate (1:1), (L)-Isomer,Ornithine, (D)-Isomer,Ornithine, (DL)-Isomer,Ornithine, (L)-Isomer,2,5 Diaminopentanoic Acid
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005260 Female Females
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

M Lu, and W H Wang
September 1993, Pflugers Archiv : European journal of physiology,
M Lu, and W H Wang
October 1995, Kidney international,
M Lu, and W H Wang
January 1989, The American journal of physiology,
M Lu, and W H Wang
November 2005, American journal of physiology. Renal physiology,
M Lu, and W H Wang
September 1990, The American journal of physiology,
M Lu, and W H Wang
October 2005, American journal of physiology. Renal physiology,
M Lu, and W H Wang
October 1995, Kidney international,
Copied contents to your clipboard!