Cell volume in vascular smooth muscle is regulated by bumetanide-sensitive ion transport. 1996

S N Orlov, and J Tremblay, and P Hamet
Centre de Recherche Hôtel-Dieu de Montréal, Université de Montreal, Quebec, Canada.

Vascular smooth muscle cells (VSMC) exhibit shrinkage-induced bumetanide-inhibited 86Rb influx and ethylisopropylamiloride (EIPA)-inhibited 22Na influx. In this study, we examined the role of these transport pathways in volume adjustment of VSMC after isosmotic and hyperosmotic shrinkage. Cell volume was assessed by measurement of [14C]urea distribution. An initial 18-20% cell volume decrease in isosmotically shrunken VSMC was followed by a regulatory volume increase (RVI). RVI was completely abolished by bumetanide but not by EIPA. No RVI was noted in hyperosmotically shrunken VSMC. The initial rate of bumetanide-inhibited 86Rb influx was two- to threefold higher in isosmotically shrunken VSMC than with hyperosmotic shrinkage. Hyperosmotic shrinkage of VSMC was accompanied by a three- to fourfold increase in the rate of bumetanide-inhibited 86Rb efflux, whereas isosmotic shrinkage augmented this component by only 20-30%. In contrast to bumetanide-inhibited 86Rb influx, isosmotic shrinkage slightly increased the rate of EIPA-sensitive 22Na influx. Hyperosmotic shrinkage led to transient activation of EIPA-inhibited 22Na influx, which was completely abolished in 15 min. Activation of adenosine 3',5'-cyclic monophosphate (cAMP) signaling with isoproterenol arborized VSMC and decreased their volume by approximately 15%. A similar volume decrease was seen in VSMC treated with the microfilament-disrupting compound, cytochalasin B. The isoproterenol-induced cell volume decrease was prolonged by the addition of bumetanide. Unlike isoproterenol, agents that raise intracellular Ca2+ (A-23187 and angiotensin II) did not modify VSMC volume. Thus our data demonstrate involvement of cAMP signaling in the regulating of VSMC volume and a key role of bumetanide-inhibited ion transport in the RVI after isosmotically induced shrinkage.

UI MeSH Term Description Entries
D007477 Ions An atom or group of atoms that have a positive or negative electric charge due to a gain (negative charge) or loss (positive charge) of one or more electrons. Atoms with a positive charge are known as CATIONS; those with a negative charge are ANIONS.
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011914 Rats, Inbred BN An inbred strain of rat that is widely used in a variety of research areas such as the study of ASTHMA; CARCINOGENESIS; AGING; and LEUKEMIA. Rats, Inbred Brown Norway,Rats, BN,BN Rat,BN Rat, Inbred,BN Rats,BN Rats, Inbred,Inbred BN Rat,Inbred BN Rats,Rat, BN,Rat, Inbred BN
D002034 Bumetanide A sulfamyl diuretic. Bumedyl,Bumethanide,Bumex,Burinex,Drenural,Fordiuran,Miccil,PF-1593,PF 1593,PF1593
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

S N Orlov, and J Tremblay, and P Hamet
May 1986, Hypertension (Dallas, Tex. : 1979),
S N Orlov, and J Tremblay, and P Hamet
April 2015, Circulation research,
S N Orlov, and J Tremblay, and P Hamet
October 1975, Arzneimittel-Forschung,
S N Orlov, and J Tremblay, and P Hamet
February 1980, The Biochemical journal,
S N Orlov, and J Tremblay, and P Hamet
December 2016, Advanced materials (Deerfield Beach, Fla.),
S N Orlov, and J Tremblay, and P Hamet
June 1983, Biochimica et biophysica acta,
S N Orlov, and J Tremblay, and P Hamet
November 2011, American journal of surgery,
S N Orlov, and J Tremblay, and P Hamet
November 2001, Biochemical and biophysical research communications,
Copied contents to your clipboard!