Growth hormone increases calcium uptake in rat fat cells by a mechanism dependent on protein kinase C. 1996

S Gaur, and H Yamaguchi, and H M Goodman
Department of Physiology, University of Massachusetts Medical School, Worcester 01655, USA.

Growth hormone (GH; 500 ng/ml) rapidly doubled cytosolic free Ca2+ concentration ([Ca2+]i) in rat adipocytes as determined with the Ca2+ indicator fura 2. No response was seen in Ca(2+)-free medium, suggesting that the increase in [Ca2+]i was due to Ca2+ influx. GH also doubled the influx of Mn2- as inferred from the rate of fluorescence quenching. Depolarization with 30 mMK+ also increased [Ca2+]i, and the increase in [Ca2+]i due to either GH or 30 mMK+ was blocked by 100 nM nimodipine, suggesting that GH increases [Ca2+]i by activating voltage-sensitive L-type Ca2+ channels. GH increased [Ca2+]i even when K+ channels were blocked, suggesting that activation of Ca2+ uptake was not secondary to closure of K+ channels and consequent depolarization. A diacylglycerol (PAG) analogue, 1,2-dioctanoyl-sn-glycerol (50 microM), duplicated, and the protein kinase C(PKC) inhibitors calphostin C (100 nM), chelerythrine (1 microM), and bis-indolylmaleimide (250 nM) inhibited the effects of GH on [Ca2+]i. Xanthogenate tricyclodecan-9-yl (D609), a specific inhibitor of phospholipase C(PLC), abolished the increase in [Ca2+]i due to GH but not to DAG. The results suggest that GH increases [Ca2+]i by activation of PLC, release of DAG, and activation of a Ca(2+)-independent isoform of PKC. PKC-catalyzed phosphorylation of either the Ca2+ channels or a protein that regulates them may account for the influx of Ca2+ produced by GH.

UI MeSH Term Description Entries
D008297 Male Males
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D009553 Nimodipine A calcium channel blockader with preferential cerebrovascular activity. It has marked cerebrovascular dilating effects and lowers blood pressure. Admon,Bay e 9736,Brainal,Calnit,Kenesil,Modus,Nimodipin Hexal,Nimodipin-ISIS,Nimodipino Bayvit,Nimotop,Nymalize,Remontal,Bayvit, Nimodipino,Hexal, Nimodipin,Nimodipin ISIS,e 9736, Bay
D009636 Norbornanes Compounds that include or are derivatives of norbornane(bicyclo[2.2.1]heptane). Norbornane Derivatives,Norbornene Derivatives,Norbornenes,Norcamphanes,Derivatives, Norbornane,Derivatives, Norbornene
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001952 Bridged-Ring Compounds Cyclic hydrocarbons that contain multiple rings which share one or more bridgehead connections. Bridged Compounds,Bridged Ring Compounds

Related Publications

S Gaur, and H Yamaguchi, and H M Goodman
September 1991, Molecular and cellular endocrinology,
S Gaur, and H Yamaguchi, and H M Goodman
March 2014, Journal of physiology and biochemistry,
S Gaur, and H Yamaguchi, and H M Goodman
April 2001, Molecular and cellular endocrinology,
S Gaur, and H Yamaguchi, and H M Goodman
June 1990, The Biochemical journal,
Copied contents to your clipboard!