Dual signal transduction mechanisms modulate ciliary beat frequency in upper airway epithelium. 1996

B Yang, and R J Schlosser, and T V McCaffrey
Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota 55905, USA.

This study investigated the effects of methacholine and terbutaline on the ciliary beat frequency (CBF) of upper airway epithelium. The CBF of cultured human adenoid explants was measured using microphotometry. Methacholine (10(-6) M) and terbutaline (10(-6)M) increased CBF a maximum of 23.0 +/- 1.8% (P < 0.001) and 16.5 +/- 2.3% (P < 0.001). Inhibition of endogenous nitric oxide (NO) production by nitro-L-arginine methyl ester (L-NAME) (10(-6) M) abolished the effects of methacholine in L-arginine-free medium (P < 0.008). This inhibition was reversed by addition of L-arginine. There was no inhibition of terbutaline-induced ciliostimulation by L-NAME (P < 0.5). KT-5823 (10(-6)M), a guanosine 3',5'-cyclic monophosphate (cGMP) kinase inhibitor, significantly inhibited the effects of methacholine (P < 0.0001), but not terbutaline (P > 0.15). H-89 (10(-6) M), a cAMP kinase inhibitor, significantly inhibited terbutaline-induced ciliostimulation (P < 0.0001), but not methacholine-induced ciliostimulation (P > 0.05). Diclofenac (10(-6) M), a cyclooxygenase inhibitor, significantly inhibited the effects of methacholine (P < 0.0007) but had no effect on terbutaline-induced ciliostimulation (P > 0.05). These findings suggest that the CBF of upper airway epithelium is modulated through at least two distinct pathways. The beta 2-adrenoceptor produces ciliary stimulation by a pathway involving increased intracellular cAMP levels, while the muscarinic receptor increases CBF by a mechanism involving production of prostaglandins, NO, and cGMP.

UI MeSH Term Description Entries
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000234 Adenoids A collection of lymphoid nodules on the posterior wall and roof of the NASOPHARYNX. Pharyngeal Tonsils,Tonsil, Pharyngeal,Pharyngeal Tonsil,Adenoid,Tonsils, Pharyngeal
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic
D013726 Terbutaline A selective beta-2 adrenergic agonist used as a bronchodilator and tocolytic. Arubendol,Asthmoprotect,Brethaire,Brethine,Bricanyl,Bricanyl SA,Butaliret,Butalitab,Contimit,KWD-2019,Monovent,Taziken,Tedipulmo,Terbasmin,Terbul,Terbutalin AL,Terbutalin Stada,Terbutalin-ratiopharm,Terbutaline Sulfate,Terbuturmant,terbutalin von ct,KWD 2019,KWD2019,Terbutalin ratiopharm
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

B Yang, and R J Schlosser, and T V McCaffrey
July 2005, Experimental physiology,
B Yang, and R J Schlosser, and T V McCaffrey
April 1998, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery,
B Yang, and R J Schlosser, and T V McCaffrey
January 1982, The American review of respiratory disease,
B Yang, and R J Schlosser, and T V McCaffrey
October 2004, The Journal of physiology,
B Yang, and R J Schlosser, and T V McCaffrey
October 1992, American journal of respiratory cell and molecular biology,
B Yang, and R J Schlosser, and T V McCaffrey
October 2011, Pulmonary pharmacology & therapeutics,
B Yang, and R J Schlosser, and T V McCaffrey
October 1988, Journal of applied physiology (Bethesda, Md. : 1985),
B Yang, and R J Schlosser, and T V McCaffrey
August 1991, The Journal of physiology,
B Yang, and R J Schlosser, and T V McCaffrey
April 1985, Cryobiology,
B Yang, and R J Schlosser, and T V McCaffrey
August 2009, The European respiratory journal,
Copied contents to your clipboard!