Modulation of gap junctional intercellular communication by EGF in human kidney epithelial cells. 1996

E Rivedal, and S Mollerup, and A Haugen, and G Vikhamar
Laboratory for Environmental and Occupational Cancer, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo.

Modulation of gap junctional intercellular communication (GJIC) was studied in a multistep model of human renal epithelial carcinogenesis. We report that the majority of primary human kidney epithelial cells (NHKE) grown from fetal kidney explants did not communicate through gap junctions. Communication could, however, be observed within a subpopulation of the cells. Ni(II)-immortalized cells (IHKE) showed GJIC at a level of 10-20 communicating cells, but with heterogeneous regions on the dish, with regard to both communication and distribution of connexin43. The heterogeneity was less pronounced in a ras-transfected tumourigenic cell line (THKE), which also showed communication of approximately 10-20 dye-coupled cells. Communication within the IHKE sub-clone K7 decreased from 55 dye-coupled cells communicating on day 1 after seeding to approximately 13 in cells grown for 4 days. Daily change of growth medium reduced the decrease in GJIC. EGF enhanced communication following a lag period which depended on days in culture. The largest increase in GJIC was observed in 2-day-old cultures, where the number of communicating cells in some experiments increased from approximately 45 to 130 dye-coupled cells 4 h following change to medium with EGF. The induction was concentration dependent and communication was enhanced gradually between 2 and 7 h after exposure to EGF. A 15 min pulse of EGF was sufficient to induce the GJIC increase if the total incubation period was unchanged. Cycloheximide completely blocked the EGF-induced enhancement of communication, while actinomycin D had no effect. EGF exposure resulted in an increase in the cellular level of connexin43 protein in parallel with the enhancement in communication. Together, these results indicate that the EGF-induced enhancement of GJIC in human kidney epithelial cells was mediated through translational control of connexin43 expression.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D011500 Protein Synthesis Inhibitors Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins. Protein Synthesis Antagonist,Protein Synthesis Antagonists,Protein Synthesis Inhibitor,Antagonist, Protein Synthesis,Antagonists, Protein Synthesis,Inhibitor, Protein Synthesis,Inhibitors, Protein Synthesis,Synthesis Antagonist, Protein,Synthesis Inhibitor, Protein
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

E Rivedal, and S Mollerup, and A Haugen, and G Vikhamar
August 2012, Biochimica et biophysica acta,
E Rivedal, and S Mollerup, and A Haugen, and G Vikhamar
April 2015, The Journal of membrane biology,
E Rivedal, and S Mollerup, and A Haugen, and G Vikhamar
June 1997, Carcinogenesis,
E Rivedal, and S Mollerup, and A Haugen, and G Vikhamar
May 2021, International journal of molecular sciences,
E Rivedal, and S Mollerup, and A Haugen, and G Vikhamar
December 2012, Pathologie-biologie,
E Rivedal, and S Mollerup, and A Haugen, and G Vikhamar
January 1996, Anticancer research,
E Rivedal, and S Mollerup, and A Haugen, and G Vikhamar
March 1986, Toxicology and applied pharmacology,
E Rivedal, and S Mollerup, and A Haugen, and G Vikhamar
January 1995, Progress in clinical and biological research,
E Rivedal, and S Mollerup, and A Haugen, and G Vikhamar
October 1994, Carcinogenesis,
Copied contents to your clipboard!