Genotoxicity of aflatoxin B1: evidence for a recombination-mediated mechanism in Saccharomyces cerevisiae. 1996

C Sengstag, and B Weibel, and M Fasullo
Genetics Department, University of Zürich, Schwerzenbach, Switzerland.

The potent liver carcinogen aflatoxin B1 (AFB1) is metabolized by cytochrome P450 to the mutagenic epoxide. We have observed that activated AFB1 also strongly induced mitotic recombination in the yeast Saccharomyces cerevisiae. To compare the recombinogenicity of AFB1 to its mutagenicity, three metabolically competent S. cerevisiae strains have been constructed. The frequencies of induced recombinants resulting from gene conversion or chromosomal translocations were determined by different prototrophic selections using two strains, whereas the inducibility of forward mutations was determined by the frequency of drug resistance in the third strain. Human cytochrome P4501A1- (CYP1A) and NADPH-cytochrome P450-oxidoreductase cDNAs were expressed in the strains to ensure intracellular metabolism to the epoxide. Exposure of the strains to AFB1 resulted in a 139- and 24-fold increase in the translocation and gene conversion frequencies, respectively, whereas the mutation frequency was increased only 3-fold. In contrast, benzo[a]pyrene-7,8-dihydrodiol and ethyl methanesulfonate induced mutation and mitotic recombination to similar degrees. We conclude that AFB1 exerted a strong recombinogenic, but only a weak mutagenic, effect. The recombinogenicity of AFB1 in yeast may indicate a mechanism for the high proportion of loss of heterozygosity that has been detected in AFB1-related human liver cancers.

UI MeSH Term Description Entries
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005785 Gene Conversion The asymmetrical segregation of genes during replication which leads to the production of non-reciprocal recombinant strands and the apparent conversion of one allele into another. Thus, e.g., the meiotic products of an Aa individual may be AAAa or aaaA instead of AAaa, i.e., the A allele has been converted into the a allele or vice versa. Polar Recombination,Polaron,Conversion, Gene,Conversions, Gene,Gene Conversions,Polar Recombinations,Polarons,Recombination, Polar,Recombinations, Polar
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.

Related Publications

C Sengstag, and B Weibel, and M Fasullo
February 2014, Mutation research. Genetic toxicology and environmental mutagenesis,
C Sengstag, and B Weibel, and M Fasullo
June 2011, Journal of food protection,
C Sengstag, and B Weibel, and M Fasullo
September 2007, Journal of food protection,
C Sengstag, and B Weibel, and M Fasullo
January 2023, Toxicology letters,
C Sengstag, and B Weibel, and M Fasullo
January 1995, Food additives and contaminants,
C Sengstag, and B Weibel, and M Fasullo
March 1993, Biochemical and biophysical research communications,
Copied contents to your clipboard!