Biphasic effects of intrapipette cyclic guanosine monophosphate on L-type calcium current and contraction of guinea pig ventricular myocytes. 1996

T Shirayama, and A J Pappano
Department of Pharmacology, University of Connecticut Health Center, Farmington, USA.

The effects of intracellular cyclic guanosine monophosphate (cGMP) on L-type calcium current (lCa) and contraction of ventricular myocytes enzymatically isolated from guinea pig hearts were investigated to test the hypothesis that cGMP increases contractions along with ICa in these cells. ICa and contractions, elicited every 15 sec, were recorded simultaneously with a whole-cell voltage-clamp method and a video edge-detector, respectively. Cells were superfused with Tyrode's solution (22 degrees C); the pipette solution contained 120 mM potassium aspartate, 30 mM KCl, 4 mM ATP, 5 mM N-(2-hydroxyethyl)piperazine-N-(2-ethanesulfonic acid), 0.01 mM ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and various concentrations of cGMP, which entered the cell interior through the patch electrode. In the presence of 3 nM isoproterenol (ISO) in the bath, ICa was increased 3.2-fold. ICa was further increased by 20% with 30 microM cGMP; cell contractions were also increased by 32%. When ICa was maximal in the presence of 30 nM ISO, cGMP no longer increased ICa or contractions, an indication that the effects of cGMP and ISO were additive. When ICa was increased maximally (4.3-fold) by 100 microM isobutylmethylxanthine, a nonselective phosphodiesterase inhibitor, application of 100 microM cGMP in the pipette decreased ICa by 53% and cell shortening by 64%. Cyclic GMP changed contraction in parallel with ICa in the presence of either ISO or isobutylmethylxanthine. 5'-GMP had no significant effect on ICa or contraction in the presence of ISO or isobutyl-methylxanthine. Cyclic GMP alone, at 30 microM, increased ICa by 25%; this effect on basal ICa was reversed by removal of cGMP from the pipette solution. We conclude that intracellular cGMP had two effects on ICa and contraction, namely, 1) an increase caused by an action on cGMP-inhibited phosphodiesterase and 2) a decrease attributed to activation of cGMP-dependent protein kinase.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015056 1-Methyl-3-isobutylxanthine A potent cyclic nucleotide phosphodiesterase inhibitor; due to this action, the compound increases cyclic AMP and cyclic GMP in tissue and thereby activates CYCLIC NUCLEOTIDE-REGULATED PROTEIN KINASES 3-Isobutyl-1-methylxanthine,Isobutyltheophylline,IBMX,1 Methyl 3 isobutylxanthine,3 Isobutyl 1 methylxanthine
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D016276 Ventricular Function The hemodynamic and electrophysiological action of the HEART VENTRICLES. Function, Ventricular,Functions, Ventricular,Ventricular Functions

Related Publications

T Shirayama, and A J Pappano
July 1996, British journal of pharmacology,
T Shirayama, and A J Pappano
April 2004, Sheng li xue bao : [Acta physiologica Sinica],
T Shirayama, and A J Pappano
August 2001, Acta pharmacologica Sinica,
T Shirayama, and A J Pappano
August 2004, Sheng li xue bao : [Acta physiologica Sinica],
T Shirayama, and A J Pappano
March 2002, Cellular and molecular biology (Noisy-le-Grand, France),
T Shirayama, and A J Pappano
March 1998, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
T Shirayama, and A J Pappano
January 1994, Archives internationales de pharmacodynamie et de therapie,
T Shirayama, and A J Pappano
March 1993, British journal of pharmacology,
Copied contents to your clipboard!