Immunoregulatory role of neurotransmitters. 1996

Y Qiu, and Y Peng, and J Wang
Department of Physiology, Nantong Medical College, P. R. China.

The nervous and endocrine systems modulate the immune system functions through releasing neurotransmitters, neuropeptides and endocrine hormones as they regulate the other physiological functions. The immune system in turn communicates with the nervous and endocrine systems through secreting immunocompetent substances. In this report we review our concepts and evidence concerning the immunoregulatory role of acetylcholine (ACh) and monoamine neurotransmitters which include noradrenaline (NA), 5-hydroxytryptamine (5-HT) and dopamine (DA). The immunoregulatory role comprises two aspects, the modulation of immune functions by neurotransmitters and the effect of the immune system on nervous system functions. The inhibition of ACh biosynthesis in the central nervous system (CNS) caused the enhancement of the humoral immune response of rats to sheep red blood cells (SRBC); by contrast, the inhibition of acetyl-cholinesterase (AChE) activity in the CNS resulted in the suppression of the immune response. It seems that ACh in the brain plays an immunoinhibitory role. The role can be blocked by atropine, a muscarinic antagonist, but not by hexamethonium, a nicotinic antagonist. During the humoral immune response (days 3-6 after SRBC injection), activity of AChE in the hypothalamus and hippocampus was strikingly lower. It is suggested that a functional connection is present in the ACh of the brain and the immune system. In vitro, ACh at 10(-9) to 10(-4) mol/l dose range significantly strengthened the spleen cell proliferation induced by concanavalin (Con A). The action of ACh only occurred either before or just after T lymphocytes were activated through muscarinic cholinergic receptors. In vivo, the depletion of monoamine neurotransmitters or only NA in the CNS caused the impairment of the anti-SRBC response of rats. During the phases of days 2-7 post-immunization, the metabolic alterations of NA, 5-HT and DA emerged in the CNS and the lymphoid organs of rats, which mainly exhibited that in the peak periods of the antibody response, the metabolism of the monoamine neurotransmitters in the hypothalamus and hippocampus was markedly increased, but NA content in the spleen and thymus was significantly decreased. These results provide evidence for the bidirectional information exchange network between the monoamine neurotransmitters and the immune system. Exposure to NA (at 10(-8)-10(-5) mol/l concentration range) in vitro was shown to inhibit the Con A-induced proliferation of the rat spleen cells. This effect of NA was related to the early events involved in the initiation of T cell proliferation and was mediated by either alpha- or beta-adrenergic receptors. The evidence that altering 5-HT level in the central or peripheral nervous systems through various ways of administering the drugs to regulate 5-HT biosynthesis led to the variations of the antibody response, and that cyproheptadine, an antagonist of serotoninergic receptors, can block the action of 5-HT show that 5-HT may exert an immunoinhibitory effect, which appears to be mediated via the peripheral mechanism to relate to the 5-HT receptors. However, the antibody response can cause changes in 5-HT metabolism in the CNS. The possible reasons for these results are discussed. Collectively, the antibody response arouses the metabolic variations of ACh, NA, 5-HT and DA in the central and peripheral nervous systems and then, these alterations can in turn influence immune function through neurotransmitter relevant receptors present on the immunocytes. The purpose of this interaction is most likely to maintain the homeostasis of the immune and other physiological functions.

UI MeSH Term Description Entries
D007107 Immune System The body's defense mechanism against foreign organisms or substances and deviant native cells. It includes the humoral immune response and the cell-mediated response and consists of a complex of interrelated cellular, molecular, and genetic components. Immune Systems,System, Immune,Systems, Immune
D000276 Adjuvants, Immunologic Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity. Immunoactivators,Immunoadjuvant,Immunoadjuvants,Immunologic Adjuvant,Immunopotentiator,Immunopotentiators,Immunostimulant,Immunostimulants,Adjuvant, Immunologic,Adjuvants, Immunological,Immunologic Adjuvants,Immunological Adjuvant,Adjuvant, Immunological,Immunological Adjuvants
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015213 Neuroimmunomodulation The biochemical and electrophysiological interactions between the NERVOUS SYSTEM and IMMUNE SYSTEM. Cholinergic Anti-inflammatory Pathway,Neuro-immune Axis,Neuro-immune Communication,Neuro-immune Interactions,Neuro-immunomodulation,Neuroimmune Axis,Neuroimmune Communication,Neuroimmune Interactions,Neuroimmune Processes,Vagal Anti-inflammatory Pathway,Vagal-immune Interactions,Neuroimmune Mechanisms,Neuroimmune Process,Anti-inflammatory Pathway, Cholinergic,Anti-inflammatory Pathway, Vagal,Cholinergic Anti inflammatory Pathway,Cholinergic Anti-inflammatory Pathways,Communication, Neuro-immune,Communication, Neuroimmune,Interaction, Neuro-immune,Interaction, Neuroimmune,Mechanism, Neuroimmune,Neuro immune Axis,Neuro immune Communication,Neuro immune Interactions,Neuro immunomodulation,Neuro-immune Communications,Neuro-immune Interaction,Neuroimmune Communications,Neuroimmune Interaction,Neuroimmune Mechanism,Process, Neuroimmune,Vagal Anti inflammatory Pathway,Vagal Anti-inflammatory Pathways,Vagal immune Interactions,Vagal-immune Interaction
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

Y Qiu, and Y Peng, and J Wang
January 1992, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques,
Y Qiu, and Y Peng, and J Wang
December 1988, Trends in neurosciences,
Y Qiu, and Y Peng, and J Wang
December 2021, Nature reviews. Gastroenterology & hepatology,
Y Qiu, and Y Peng, and J Wang
February 1991, Sheng li xue bao : [Acta physiologica Sinica],
Y Qiu, and Y Peng, and J Wang
January 1989, Progress in clinical and biological research,
Y Qiu, and Y Peng, and J Wang
January 1994, Sheng li ke xue jin zhan [Progress in physiology],
Y Qiu, and Y Peng, and J Wang
January 1985, Annales de l'Institut Pasteur. Immunologie,
Y Qiu, and Y Peng, and J Wang
April 1987, Hospital practice (Office ed.),
Y Qiu, and Y Peng, and J Wang
February 2020, Journal of cellular physiology,
Y Qiu, and Y Peng, and J Wang
June 2010, Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine,
Copied contents to your clipboard!