Interaction between fast and slow inactivation in Skm1 sodium channels. 1996

D E Featherstone, and J E Richmond, and P C Ruben
Department of Biology, Utah State University, Logan 84322-5305, USA. davef@cc.usu.edu

Rat skeletal muscle (Skm1) sodium channel alpha and beta 1 subunits were coexpressed in Xenopus oocytes, and resulting sodium currents were recorded from on-cell macropatches. First, the kinetics and steady-state probability of both fast and slow inactivation in Skm1 wild type (WT) sodium channels were characterized. Next, we confirmed that mutation of IFM to QQQ (IFM1303QQQ) in the DIII-IV 'inactivation loop' completely removed fast inactivation at all voltages. This mutation was then used to characterize Skm1 slow inactivation without the presence of fast inactivation. The major findings of this paper are as follows: 1) Even with complete removal of fast inactivation by the IFM1303QQQ mutation, slow inactivation remains intact. 2) In WT channels, approximately 20% of channels fail to slow-inactivate after fast-inactivating, even at very positive potentials. 3) Selective removal of fast inactivation by IFM1303QQQ allows slow inactivation to occur more quickly and completely than in WT. We conclude that fast inactivation reduces the probability of subsequent slow inactivation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D005260 Female Females
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel

Related Publications

D E Featherstone, and J E Richmond, and P C Ruben
February 1987, The Journal of physiology,
D E Featherstone, and J E Richmond, and P C Ruben
July 1996, Biophysical journal,
D E Featherstone, and J E Richmond, and P C Ruben
August 1993, Biophysical journal,
D E Featherstone, and J E Richmond, and P C Ruben
October 2002, The Journal of biological chemistry,
D E Featherstone, and J E Richmond, and P C Ruben
April 1992, Biophysical journal,
D E Featherstone, and J E Richmond, and P C Ruben
January 2003, Neuroscience letters,
D E Featherstone, and J E Richmond, and P C Ruben
August 2004, The Journal of physiology,
D E Featherstone, and J E Richmond, and P C Ruben
June 1999, Anesthesiology,
D E Featherstone, and J E Richmond, and P C Ruben
January 1988, Doklady Akademii nauk SSSR,
D E Featherstone, and J E Richmond, and P C Ruben
February 1987, The Journal of physiology,
Copied contents to your clipboard!