Exploration of requirements for peptidomimetic immune recognition. Antigenic and immunogenic properties of reduced peptide bond pseudopeptide analogues of a histone hexapeptide. 1996

N Benkirane, and G Guichard, and J P Briand, and S Muller
Institut de Biologie Moléculaire et Cellulaire, UPR 9021 CNRS, 15, rue Descartes, 67000 Strasbourg, France.

We present a detailed analysis of the antigenic and immunogenic properties of a series of very stable peptidomimetics of a model hexapeptide corresponding to the C-terminal residues 130-135 of histone H3. Five pseudopeptide analogues of the natural sequence IRGERA were synthesized by systematically replacing, in each analogue, one peptide bond at a time by a reduced peptide bond Psi(CH2-NH). Three important features of the resulting analogues were examined. First, the analogues were tested in a biosensor system for their ability to bind monoclonal antibodies generated against the parent natural peptide, and their kinetic rate constants were measured. The results show that reduced peptide bond analogues can very efficiently mimic the parent peptide. The position of reduced bonds which were deleterious for the binding was found to depend on the antibody tested, and one monoclonal antibody recognized all five analogues. The equilibrium affinity constant toward reduced peptide bond analogues of four antibodies of IgG1 isotype induced against the parent hexapeptide was higher (up to 670 times) with certain analogues than toward the homologous peptide. Second, immunogenic properties of the five analogues were studied, and it was found that polyclonal antibodies induced against analogues in which Psi(CH2-NH) bonds were introduced between residues 130-131, 131-132, and 132-133 (R1-R2, R2-R3, and R3-R4) cross-reacted strongly with the cognate protein H3. Third, we tested the protease resistance of analogues. Altogether, the results provide a strong support for the potent applicability of reduced peptide bond pseudopeptides as components of synthetic vaccines and open a new field for the development of immunomodulatory agents.

UI MeSH Term Description Entries
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

N Benkirane, and G Guichard, and J P Briand, and S Muller
January 1992, Peptide research,
N Benkirane, and G Guichard, and J P Briand, and S Muller
January 1995, Peptides,
N Benkirane, and G Guichard, and J P Briand, and S Muller
January 1991, The Journal of biological chemistry,
N Benkirane, and G Guichard, and J P Briand, and S Muller
November 1991, European journal of pharmacology,
N Benkirane, and G Guichard, and J P Briand, and S Muller
August 1984, Molecular immunology,
N Benkirane, and G Guichard, and J P Briand, and S Muller
September 1995, Journal of medicinal chemistry,
N Benkirane, and G Guichard, and J P Briand, and S Muller
October 1989, The Journal of biological chemistry,
N Benkirane, and G Guichard, and J P Briand, and S Muller
March 2001, Journal of peptide science : an official publication of the European Peptide Society,
N Benkirane, and G Guichard, and J P Briand, and S Muller
March 1995, Journal of medicinal chemistry,
N Benkirane, and G Guichard, and J P Briand, and S Muller
June 2022, Molecules (Basel, Switzerland),
Copied contents to your clipboard!