Rate and equilibrium constants for phosphoryltransfer between active site histidines of Escherichia coli HPr and the signal transducing protein IIIGlc. 1996

N D Meadow, and S Roseman
Department of Biology and the McCollum-Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218, USA.

The bacterial phosphoenolpyruvate:glycose phosphotransferase system (PTS) plays a central role in catabolizing many sugars; regulation is effected by phosphorylation of PTS proteins. In Escherichia coli, the phosphoryltransfer sequence for glucose uptake is: PEP --> Enzyme I(His191) --> HPr(His15) --> IIIGlc(His90) --> IIGlc(Cys421) --> glucose. A rapid quench method has now been developed for determining the rate and equilibrium constants of these reactions. The method was validated by control experiments, and gave the following results for phosphoryltransfer between the following protein pairs. For phospho-HPr/IIIGlc (and HPr/phospho-IIIGlc), k1 = 6.1 x 10(7) M-1 s-1, k-1 = 4.7 x 10(7); for the mutant H75QIIIGlc in place of IIIGlc, k1 = 2.8 x 10(5) M-1 s-1, k-1 = 2.3 x 10(5). The derived Keq values agreed with the Keq obtained without use of the rapid quench apparatus. Keq for both reactions is 1-1.5. The rate of phosphoryltransfer between HPr and wild type IIIGlc is close to a diffusion-controlled process, while the reactions involving the mutant H75QIIIGlc are 200-fold slower. These rate differences are explained by an hypothesis for the mechanism of phosphoryltransfer between HPr and IIIGlc based on the structures of mutant and wild type proteins (see Pelton et al. (Pelton, J. G., Torchia, D. A., Remington, S. J., Murphy, K. P., Meadow, N. D., and Roseman, S. (1996) J. Biol. Chem. 271, 33446-33456)).

UI MeSH Term Description Entries
D010731 Phosphoenolpyruvate Sugar Phosphotransferase System The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-. Phosphoenolpyruvate Hexose Phosphotransferases,Phosphoenolpyruvate-Glycose Phosphotransferase System,Hexose Phosphotransferases, Phosphoenolpyruvate,Phosphoenolpyruvate Glycose Phosphotransferase System,Phosphotransferase System, Phosphoenolpyruvate-Glycose,Phosphotransferases, Phosphoenolpyruvate Hexose,System, Phosphoenolpyruvate-Glycose Phosphotransferase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

N D Meadow, and S Roseman
October 1994, Structure (London, England : 1993),
N D Meadow, and S Roseman
October 1997, Archives of biochemistry and biophysics,
N D Meadow, and S Roseman
December 1991, Proceedings of the National Academy of Sciences of the United States of America,
N D Meadow, and S Roseman
January 1975, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!