Facilitated protein aggregation. Effects of calcium on the chaperone and anti-chaperone activity of protein disulfide-isomerase. 1996

T P Primm, and K W Walker, and H F Gilbert
Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA. hgilbert@bcm.tmc.edu

Protein disulfide-isomerase (PDI) catalyzes the formation and isomerization of disulfides during oxidative protein folding in the eukaryotic endoplasmic reticulum. At high concentrations, it also serves as a chaperone and inhibits aggregation. However, at lower concentrations, PDI can display the unusual ability to facilitate aggregation, termed anti-chaperone activity (Puig, A., and Gilbert, H. F. (1994) J. Biol. Chem. 269, 7764-7771). Under reducing conditions (10 mM dithiothreitol) and at a low concentration (0.1-0. 3 microM) relative to the unfolded protein substrate, PDI facilitates aggregation of alcohol dehydrogenase (11 microM) that has been denatured thermally or chemically. But at higher concentrations (>0.8 microM), PDI inhibits aggregation under the same conditions. With denatured citrate synthase, PDI does not facilitate aggregation, but higher concentrations do inhibit aggregation. Anti-chaperone behavior is associated with the appearance of both PDI and substrate proteins in insoluble complexes, while chaperone behavior results in the formation of large (>500 kDa) but soluble complexes that contain both proteins. Physiological concentrations of calcium and magnesium specifically increase the apparent rate of PDI-dependent aggregation and shift the chaperone activity to higher PDI concentrations. However, calcium has no effect on the Km or Vmax for PDI-catalyzed oxidative folding, suggesting that the interactions that lead to chaperone/anti-chaperone behavior are distinct from those required for catalytic activity. To account for this unusual behavior of a folding catalyst, a model with analogy to classic immunoprecipitation is proposed; multivalent interactions between PDI and a partially aggregated protein stimulate further aggregate formation by noncovalently cross-linking smaller aggregates. However, at high ratios of PDI to substrate, cross-linking may be inhibited by saturation of the sites with PDI. The effects of PDI concentration on substrate aggregation and the modulation of the behavior by physiological levels of calcium may have implications for the involvement of PDI in protein folding, aggregation, and retention in the endoplasmic reticulum.

UI MeSH Term Description Entries
D007535 Isomerases A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5. Isomerase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002950 Citrate (si)-Synthase Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. Citrate Synthase,Synthase, Citrate
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000426 Alcohol Dehydrogenase A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen. Alcohol Dehydrogenase (NAD+),Alcohol Dehydrogenase I,Alcohol Dehydrogenase II,Alcohol-NAD+ Oxidoreductase,Yeast Alcohol Dehydrogenase,Alcohol Dehydrogenase, Yeast,Alcohol NAD+ Oxidoreductase,Dehydrogenase, Alcohol,Dehydrogenase, Yeast Alcohol,Oxidoreductase, Alcohol-NAD+

Related Publications

T P Primm, and K W Walker, and H F Gilbert
March 1994, The Journal of biological chemistry,
T P Primm, and K W Walker, and H F Gilbert
December 2001, Biochemical and biophysical research communications,
T P Primm, and K W Walker, and H F Gilbert
May 2000, The Journal of biological chemistry,
T P Primm, and K W Walker, and H F Gilbert
August 2010, Journal of thrombosis and haemostasis : JTH,
T P Primm, and K W Walker, and H F Gilbert
December 1997, The Journal of biological chemistry,
T P Primm, and K W Walker, and H F Gilbert
December 1997, The Biochemical journal,
T P Primm, and K W Walker, and H F Gilbert
February 1995, Seikagaku. The Journal of Japanese Biochemical Society,
T P Primm, and K W Walker, and H F Gilbert
September 1997, The Journal of biological chemistry,
T P Primm, and K W Walker, and H F Gilbert
August 2000, Biochimica et biophysica acta,
T P Primm, and K W Walker, and H F Gilbert
November 2003, Biochemical and biophysical research communications,
Copied contents to your clipboard!