Human immunodeficiency virus type 1 Vif does not influence expression or virion incorporation of gag-, pol-, and env-encoded proteins. 1996

R A Fouchier, and J H Simon, and A B Jaffe, and M H Malim
Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA.

The Vif protein of human immunodeficiency virus type 1 is required for productive replication in peripheral blood lymphocytes and a limited number of immortalized T-lymphoid lines (nonpermissive cells). In contrast, Vif is fully dispensable for virus replication in other T-cell lines (permissive cells). Because the infection phenotype of released virions is determined by producer cells and by the presence of Vif in those cells, we have analyzed the protein contents of purified viral particles in an attempt to define compositional differences that could explain the infection phenotype. Surprisingly, we were unable to discern any Vif- or cell-type-dependent quantitative or qualitative difference in the Gag, Pol, and Env proteins of virions or virus-producing cells that correlates with virus infectivity. We were, however, able to demonstrate that Vif itself is present in virions and, using semiquantitative Western blotting (immunoblotting), that there is an average of 30 to 80 molecules of Vif incorporated into each virion. Importantly, parallel analyses of total lysates of the producer cells revealed that the cell-associated expression levels of Vif are close to those of the Gag proteins. Given the dramatically higher abundance of Vif in cells than in virions, we speculate that Vif exerts its principal activity during the processes of virus assembly and budding and that this function could be of a structural-conformational nature.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D014771 Virion The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos. Virus Particle,Viral Particle,Viral Particles,Particle, Viral,Particle, Virus,Particles, Viral,Particles, Virus,Virions,Virus Particles
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015683 Gene Products, gag Proteins coded by the retroviral gag gene. The products are usually synthesized as protein precursors or POLYPROTEINS, which are then cleaved by viral proteases to yield the final products. Many of the final products are associated with the nucleoprotein core of the virion. gag is short for group-specific antigen. Viral gag Proteins,gag Antigen,gag Gene Product,gag Gene Products,gag Polyproteins,gag Protein,gag Viral Proteins,Gene Product, gag,Retroviral Antigen gag Protein,gag Antigens,gag Gene Related Protein,gag Polyprotein,Antigen, gag,Antigens, gag,Polyprotein, gag,Polyproteins, gag,Protein, gag,Proteins, Viral gag,Proteins, gag Viral,Viral Proteins, gag,gag Proteins, Viral
D015684 Gene Products, pol Retroviral proteins coded by the pol gene. They are usually synthesized as a protein precursor (POLYPROTEINS) and later cleaved into final products that include reverse transcriptase, endonuclease/integrase, and viral protease. Sometimes they are synthesized as a gag-pol fusion protein (FUSION PROTEINS, GAG-POL). Pol is short for polymerase, the enzyme class of reverse transcriptase. pol Gene Products,pol Polyproteins,pol Protein,Gene Product, pol,pol Polyprotein,Polyprotein, pol,Polyproteins, pol,Protein, pol,pol Gene Product
D015686 Gene Products, env Retroviral proteins, often glycosylated, coded by the envelope (env) gene. They are usually synthesized as protein precursors (POLYPROTEINS) and later cleaved into the final viral envelope glycoproteins by a viral protease. env Gene Products,env Polyproteins,env Protein,env Antigens,env Glycoproteins,env Polyprotein,Antigens, env,Polyprotein, env,Polyproteins, env
D015967 Gene Expression Regulation, Viral Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses. Regulation of Gene Expression, Viral,Viral Gene Expression Regulation,Regulation, Gene Expression, Viral
D016346 Gene Products, vif Retrovirally encoded accessary proteins that play an essential role VIRUS REPLICATION. They are found in the cytoplasm of host cells and associate with a variety of host cell proteins. Vif stands for "virion infectivity factor". Gene Products, sor,sor Gene Products,vif Gene Products,vif Protein,Gene Product, sor,Gene Product, vif,sor Gene Product,vif Gene Product

Related Publications

R A Fouchier, and J H Simon, and A B Jaffe, and M H Malim
June 1991, Journal of virology,
R A Fouchier, and J H Simon, and A B Jaffe, and M H Malim
January 1996, Journal of virology,
R A Fouchier, and J H Simon, and A B Jaffe, and M H Malim
March 1993, Virology,
R A Fouchier, and J H Simon, and A B Jaffe, and M H Malim
May 1998, The Journal of general virology,
R A Fouchier, and J H Simon, and A B Jaffe, and M H Malim
April 2011, Journal of virology,
R A Fouchier, and J H Simon, and A B Jaffe, and M H Malim
May 1995, FEBS letters,
R A Fouchier, and J H Simon, and A B Jaffe, and M H Malim
September 1996, Journal of virology,
Copied contents to your clipboard!