Reversion of a human immunodeficiency virus type 1 integrase mutant at a second site restores enzyme function and virus infectivity. 1996

B Taddeo, and F Carlini, and P Verani, and A Engelman
Laboratory of Virology, Istituto Superiore di Sanita, Rome, Italy. gamma@retro.iss.infn.it

The integration of a DNA copy of the retroviral RNA genome into the host cell genome is essential for viral replication. The virion-associated integrase protein, encoded by the 3' end of the viral pol gene, is required for integration. Stable virus-producing T-cell lines were established for replication-defective human immunodeficiency virus type 1 carrying single amino acid substitutions at conserved residues in the catalytic domain of integrase. Phenotypically reverted virus was detected 12 weeks after transfection with the integrase mutant carrying the P-109-->S mutation (P109S). Unlike the defective P109S virus, the revertant virus (designated P109SR) grew in CD4+ SupT1 cells. In addition to the Ser substitution at Pro-109, P109SR had a second substitution of Ala for Thr at position 125 in integrase. Site-directed mutagenesis was used to show that the P109S T125A genotype was responsible for the P109SR replication phenotype. The T125A substitution also rescued the in vitro enzyme activities of recombinant P109S integrase protein. P109S integrase did not display detectable 3' processing or DNA strand transfer activity, although 5 to 10% of wild-type disintegration activity was detected. P109S T125A integrase displayed nearly wild-type levels of 3' processing, DNA strand transfer, and disintegration activities, confirming that T125A is a second-site intragenic suppressor of P109S. P109S integrase ran as a large aggregate on a size exclusion column, whereas wild-type integrase ran as a monomer and P109S T125A integrase ran as a mixed population. Pro-109 and Thr-125 are not immediately adjacent in the crystal structure of the integrase catalytic domain. We suggest that the T125A substitution restores integrase function by stabilizing a structural alteration(s) induced by the P109S mutation.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D019427 HIV Integrase Enzyme of the HUMAN IMMUNODEFICIENCY VIRUS that is required to integrate viral DNA into cellular DNA in the nucleus of a host cell. HIV integrase is a DNA nucleotidyltransferase encoded by the pol gene. HIV Integration Protein,p31 Integrase Protein, HIV,p31 Integrase Protein, Human Immunodeficiency Virus,p31 pol Gene Product, HIV,p31 pol Gene Product, Human Immunodeficiency Virus,Integrase, HIV,Integration Protein, HIV

Related Publications

B Taddeo, and F Carlini, and P Verani, and A Engelman
August 1995, Journal of virology,
B Taddeo, and F Carlini, and P Verani, and A Engelman
February 1995, Journal of virology,
B Taddeo, and F Carlini, and P Verani, and A Engelman
August 1995, Virology,
B Taddeo, and F Carlini, and P Verani, and A Engelman
November 2003, Journal of cell science,
B Taddeo, and F Carlini, and P Verani, and A Engelman
November 1995, Virology,
B Taddeo, and F Carlini, and P Verani, and A Engelman
January 2001, Methods in enzymology,
B Taddeo, and F Carlini, and P Verani, and A Engelman
August 2011, Expert opinion on therapeutic patents,
B Taddeo, and F Carlini, and P Verani, and A Engelman
April 1999, Journal of virology,
Copied contents to your clipboard!