Heme oxygenase-1 and heat shock protein 70 induction in glia and neurons throughout rat brain after experimental intracerebral hemorrhage. 1997

P G Matz, and P R Weinstein, and F R Sharp
Department of Neurology, University of California at San Francisco, USA.

OBJECTIVE Current experimental evidence demonstrates the development of ischemic regions adjacent to and spatially remote from an intracerebral hematoma. The cause of this ischemia is uncertain. Because ischemia is a known inducer of stress genes, we investigated the induction of two stress proteins, heme oxygenase (HO)-1 and heat shock protein (Hsp) 70, after intracerebral hemorrhage in the rat. METHODS Immunocytochemistry for HO-1, Hsp70, and HO-2, the constitutive isoform of the HO enzyme, was performed 1, 2, and 4 days after striatal injection of saline, whole blood, or lysed blood. Immunocytochemistry for HO-1, HO-2, and Hsp70 was also performed 1 day after cortical injection of saline, whole blood, or lysed blood. RESULTS After striatal injection of lysed and whole blood, the HO-1 protein was induced in glia throughout the hemisphere ipsilateral to the hematoma, and HO-1 immunoreactivity persisted for at least 4 days. After cortical injection of lysed and whole blood, HO-1 was induced in glia throughout the neocortex. Neuronal induction of HO-1 was also observed after cortical injection of lysed blood but not whole blood or saline. After striatal injection of lysed blood, Hsp70 was induced in glia surrounding the hematoma and in neurons from the neocortex overlying the hematoma and the striatum adjacent to the hematoma. After cortical injection of lysed blood, Hsp70 was induced in neurons throughout the neocortex and hippocampus bilaterally. In contrast, after whole blood and saline injection into cortex, Hsp70 induction was observed only in scattered neurons surrounding the hematoma cavity. CONCLUSIONS Our results demonstrate that blood in the brain parenchyma induces the HO-1 stress protein but does not significantly alter HO-2 immunostaining. Our results also demonstrate that lysed blood induces Hsp70 in multiple regions of the brain and that the stress response of the brain differs depending on whether lysed blood is injected into the cortex or striatum. These results suggest that blood lysis may play an unforeseen role in the stress response of the brain to intracerebral hemorrhage.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D005260 Female Females
D006419 Heme Oxygenase (Decyclizing) A mixed function oxidase enzyme which during hemoglobin catabolism catalyzes the degradation of heme to ferrous iron, carbon monoxide and biliverdin in the presence of molecular oxygen and reduced NADPH. The enzyme is induced by metals, particularly cobalt. Haem Oxygenase,Heme Oxygenase,Oxygenase, Haem,Oxygenase, Heme
D006461 Hemolysis The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity. Haemolysis,Extravascular Hemolysis,Intravascular Hemolysis,Extravascular Hemolyses,Haemolyses,Hemolyses, Extravascular,Hemolyses, Intravascular,Hemolysis, Extravascular,Hemolysis, Intravascular,Intravascular Hemolyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013345 Subarachnoid Hemorrhage Bleeding into the intracranial or spinal SUBARACHNOID SPACE, most resulting from INTRACRANIAL ANEURYSM rupture. It can occur after traumatic injuries (SUBARACHNOID HEMORRHAGE, TRAUMATIC). Clinical features include HEADACHE; NAUSEA; VOMITING, nuchal rigidity, variable neurological deficits and reduced mental status. Hemorrhage, Subarachnoid,Perinatal Subarachnoid Hemorrhage,Subarachnoid Hemorrhage, Aneurysmal,Subarachnoid Hemorrhage, Spontaneous,SAH (Subarachnoid Hemorrhage),Subarachnoid Hemorrhage, Intracranial,Aneurysmal Subarachnoid Hemorrhage,Aneurysmal Subarachnoid Hemorrhages,Hemorrhage, Aneurysmal Subarachnoid,Hemorrhage, Intracranial Subarachnoid,Hemorrhage, Perinatal Subarachnoid,Hemorrhage, Spontaneous Subarachnoid,Hemorrhages, Aneurysmal Subarachnoid,Hemorrhages, Intracranial Subarachnoid,Hemorrhages, Perinatal Subarachnoid,Hemorrhages, Spontaneous Subarachnoid,Hemorrhages, Subarachnoid,Intracranial Subarachnoid Hemorrhage,Intracranial Subarachnoid Hemorrhages,Perinatal Subarachnoid Hemorrhages,SAHs (Subarachnoid Hemorrhage),Spontaneous Subarachnoid Hemorrhage,Spontaneous Subarachnoid Hemorrhages,Subarachnoid Hemorrhage, Perinatal,Subarachnoid Hemorrhages,Subarachnoid Hemorrhages, Aneurysmal,Subarachnoid Hemorrhages, Intracranial,Subarachnoid Hemorrhages, Perinatal,Subarachnoid Hemorrhages, Spontaneous

Related Publications

P G Matz, and P R Weinstein, and F R Sharp
January 1999, Research communications in molecular pathology and pharmacology,
P G Matz, and P R Weinstein, and F R Sharp
January 2007, Cellular & molecular biology letters,
P G Matz, and P R Weinstein, and F R Sharp
January 2013, Journal of translational medicine,
P G Matz, and P R Weinstein, and F R Sharp
June 1991, Proceedings of the National Academy of Sciences of the United States of America,
P G Matz, and P R Weinstein, and F R Sharp
August 1997, Bioscience, biotechnology, and biochemistry,
P G Matz, and P R Weinstein, and F R Sharp
October 1996, Brain research,
P G Matz, and P R Weinstein, and F R Sharp
March 2015, Journal of ethnopharmacology,
P G Matz, and P R Weinstein, and F R Sharp
March 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
P G Matz, and P R Weinstein, and F R Sharp
February 2011, Acta neurochirurgica,
P G Matz, and P R Weinstein, and F R Sharp
January 2015, Therapeutic targets for neurological diseases,
Copied contents to your clipboard!