Error analysis on parameter estimates in the ligand-receptor model: application to parameter imaging using PET data. 1996

P Millet, and J Delforge, and S Pappata, and A Syrota, and L Cinotti
CEA, Service Hospitalier Frédéric Joliot, Commissariat à l'Energie Atomique, Orsay, France.

Positron emission tomography and compartmental models allow the in vivo analysis of radioligand binding to receptor sites in the human brain. Benzodiazepine receptor binding was studied using a three-compartmental model and [11C]flumazenil. Four and five parameters were estimated from a single kinetic curve obtained with a multi-injection protocol, and parametric maps of receptor density and of the individual kinetic parameters were created with four-pixel sampling of the experimental images. The coefficient of variation on each estimated model parameter was calculated using the diagonal elements of the covariance matrix. However, these estimates are valid only under some statistical hypotheses which are not always verified with PET data. Thus, in order to verify the validity of the coefficient of variation of each parameter calculated with the covariance matrix, these results have been compared with the more rigorous statistical results provided by a Monte Carlo simulation. The study showed a negligible difference between the results obtained by the two methods for a low noise level in time-concentration curves encountered using large ROIs. However, this bias becomes less negligible when the noise level is high and some estimations of the coefficients of variation were unacceptable (> 100%) with the five-parameter model. Such difficulties did not occur with the four-parameter model which led to parametric images with good quality and acceptable estimates of coefficients of variation (less than 20% in about 75% of the ROIs).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001927 Brain Diseases Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM. Intracranial Central Nervous System Disorders,Brain Disorders,CNS Disorders, Intracranial,Central Nervous System Disorders, Intracranial,Central Nervous System Intracranial Disorders,Encephalon Diseases,Encephalopathy,Intracranial CNS Disorders,Brain Disease,Brain Disorder,CNS Disorder, Intracranial,Encephalon Disease,Encephalopathies,Intracranial CNS Disorder
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D005442 Flumazenil A potent benzodiazepine receptor antagonist. Since it reverses the sedative and other actions of benzodiazepines, it has been suggested as an antidote to benzodiazepine overdoses. Flumazepil,Anexate,Lanexat,Ro 15-1788,Romazicon,Ro 15 1788,Ro 151788
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014055 Tomography, Emission-Computed Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image. CAT Scan, Radionuclide,CT Scan, Radionuclide,Computerized Emission Tomography,Radionuclide Tomography, Computed,Scintigraphy, Computed Tomographic,Tomography, Radionuclide-Computed,Computed Tomographic Scintigraphy,Emission-Computed Tomography,Radionuclide Computer-Assisted Tomography,Radionuclide Computerized Tomography,Radionuclide-Computed Tomography,Radionuclide-Emission Computed Tomography,Tomography, Computerized Emission,CAT Scans, Radionuclide,CT Scans, Radionuclide,Computed Radionuclide Tomography,Computed Tomography, Radionuclide-Emission,Computer-Assisted Tomographies, Radionuclide,Computer-Assisted Tomography, Radionuclide,Computerized Tomography, Radionuclide,Emission Computed Tomography,Emission Tomography, Computerized,Radionuclide CAT Scan,Radionuclide CAT Scans,Radionuclide CT Scan,Radionuclide CT Scans,Radionuclide Computed Tomography,Radionuclide Computer Assisted Tomography,Radionuclide Computer-Assisted Tomographies,Radionuclide Emission Computed Tomography,Scan, Radionuclide CAT,Scan, Radionuclide CT,Scans, Radionuclide CAT,Scans, Radionuclide CT,Tomographic Scintigraphy, Computed,Tomographies, Radionuclide Computer-Assisted,Tomography, Computed Radionuclide,Tomography, Emission Computed,Tomography, Radionuclide Computed,Tomography, Radionuclide Computer-Assisted,Tomography, Radionuclide Computerized,Tomography, Radionuclide-Emission Computed

Related Publications

P Millet, and J Delforge, and S Pappata, and A Syrota, and L Cinotti
July 1990, IEEE transactions on bio-medical engineering,
P Millet, and J Delforge, and S Pappata, and A Syrota, and L Cinotti
May 2012, Medical physics,
P Millet, and J Delforge, and S Pappata, and A Syrota, and L Cinotti
November 1997, NeuroImage,
P Millet, and J Delforge, and S Pappata, and A Syrota, and L Cinotti
August 1991, Journal of theoretical biology,
P Millet, and J Delforge, and S Pappata, and A Syrota, and L Cinotti
September 2007, Annals of nuclear medicine,
P Millet, and J Delforge, and S Pappata, and A Syrota, and L Cinotti
September 2017, NeuroImage,
P Millet, and J Delforge, and S Pappata, and A Syrota, and L Cinotti
October 2004, Neurochemistry international,
P Millet, and J Delforge, and S Pappata, and A Syrota, and L Cinotti
December 2012, Clinical trials (London, England),
P Millet, and J Delforge, and S Pappata, and A Syrota, and L Cinotti
January 2005, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference,
P Millet, and J Delforge, and S Pappata, and A Syrota, and L Cinotti
June 2004, Annals of biomedical engineering,
Copied contents to your clipboard!