The Hox cooperativity motif of the chimeric oncoprotein E2a-Pbx1 is necessary and sufficient for oncogenesis. 1997

C P Chang, and I de Vivo, and M L Cleary
Department of Pathology, Stanford University School of Medicine, California 94305, USA.

E2a-Pbx1 chimeric oncoproteins result from fusion of the E2A and PBX1 genes at the sites of t(1;19) chromosomal translocations in a subset acute lymphoblastic leukemias. Experimentally, E2a-Pbx1 transforms a variety of cell types, including fibroblasts, myeloid progenitors, and lymphoblasts. Structure-function studies have shown that contributions from both E2a and Pbx1 are necessary for oncogenesis, but the Pbx1 homeodomain is dispensable and the required portion of Pbx1 has not been delineated. In this study, we used deletional and site-directed mutagenesis to identify portions of Pbx1 necessary for oncogenic and transcriptional activities of E2a-Pbx1. These studies defined a motif (named the Hox cooperativity motif [HCM]) carboxy terminal to the Pbx homeodomain that is required for cooperative DNA binding, cellular transcriptional activity, and the oncogenic potential of E2a-Pbx1. The HCM is highly conserved throughout the Pbx/exd subfamily of divergent homeodomain proteins and functions in DNA-binding assays as a potential contact site for Hox dimerization. E2a-Pbx1 proteins with interstitial deletion or single-point mutations in the HCM could neither activate transcription in cellular assays nor transform NIH 3T3 cells. An E2a-Pbx1 mutant containing 50 amino acids of Pbx1b spanning the HCM but lacking the homeodomain was capable of inducing fibroblast transformation. Thus, the HCM is a necessary and sufficient contribution of Pbx1 for oncogenesis induced by E2a-Pbx1 and accounts for its homeodomain-independent transforming properties. Since subtle alterations of the Pbx HCM result in complete abrogation of transforming activity whereas the homeodomain is entirely dispensable, we conclude that interactions mediated by the HCM are more important for transformation by E2a-Pbx1 than interactions with cognate Pbx DNA sites.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

C P Chang, and I de Vivo, and M L Cleary
July 2020, Blood,
C P Chang, and I de Vivo, and M L Cleary
March 2019, Scientific reports,
C P Chang, and I de Vivo, and M L Cleary
October 2008, Oncogene,
Copied contents to your clipboard!