X-ray crystallography of large RNAs: heavy-atom derivatives by RNA engineering. 1996

B L Golden, and A R Gooding, and E R Podell, and T R Cech
Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder 80309-0215, USA.

For small RNAs, isomorphous heavy-atom derivatives can be obtained by crystallizing synthetic versions that incorporate modified nucleotides such as iodo- or bromouridine. However, such a synthetic approach is not yet feasible for RNAs greater than approximately 40 nt. We have been investigating P4-P6, a 160-nt domain of the self-splicing Tetrahymena intron whose structure was solved recently (Cate JH et al., 1996, Science 273:1678-1685). To incorporate iodouridine, a two-piece RNA was constructed. The 5' segment, containing the majority of the molecule, was transcribed in vitro using a self-processing hammerhead ribozyme to cleave the nascent transcript and give a homogenous 3' end. A synthetic 5-iodouridine-containing RNA corresponding to the remainder of the sequence was then annealed to the transcribed piece of RNA. The resulting RNA appeared structurally and functionally sound as judged by nondenaturing gel electrophoresis and RNA cleavage assays. Four versions of this two-piece system with 5-iodouridine substitutions at different positions crystallized under the same conditions as the native RNA, yielding two useful heavy-atom derivatives of P4-P6. The position of the iodine atoms for the derivatives could be determined in the absence of phase information, and an interpretable electron density map was calculated using only the data from the two iodouridine derivatives. This approach is expected to be readily adaptable to other large, structured RNA molecules.

UI MeSH Term Description Entries
D007065 Idoxuridine An analog of DEOXYURIDINE that inhibits viral DNA synthesis. The drug is used as an antiviral agent. 5-Iodo-2'-deoxyuridine,IUdR,Iododeoxyuridine,5-Iododeoxyuridine,Allergan 211,Herplex Liquifilm,Idoxuridine, 123I-Labeled,Idoxuridine, 125I-Labeled,Idoxuridine, 131I-Labeled,Idoxuridine, 3H-Labeled,Idoxuridine, Radical Ion (+1),Idoxuridine, Radical Ion (1-),Kerecide,NSC-39661,Oftan-IDU,SK&F-14287,Stoxil,123I-Labeled Idoxuridine,125I-Labeled Idoxuridine,131I-Labeled Idoxuridine,3H-Labeled Idoxuridine,5 Iodo 2' deoxyuridine,5 Iododeoxyuridine,Idoxuridine, 123I Labeled,Idoxuridine, 125I Labeled,Idoxuridine, 131I Labeled,Idoxuridine, 3H Labeled,Liquifilm, Herplex,NSC 39661,NSC39661,Oftan IDU,OftanIDU
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

B L Golden, and A R Gooding, and E R Podell, and T R Cech
January 2000, Methods in enzymology,
B L Golden, and A R Gooding, and E R Podell, and T R Cech
January 2000, Methods in enzymology,
B L Golden, and A R Gooding, and E R Podell, and T R Cech
January 2012, Methods in molecular biology (Clifton, N.J.),
B L Golden, and A R Gooding, and E R Podell, and T R Cech
November 2012, Journal of natural products,
B L Golden, and A R Gooding, and E R Podell, and T R Cech
February 2023, Molecules (Basel, Switzerland),
B L Golden, and A R Gooding, and E R Podell, and T R Cech
October 1990, Protein engineering,
B L Golden, and A R Gooding, and E R Podell, and T R Cech
April 2009, Journal of applied crystallography,
B L Golden, and A R Gooding, and E R Podell, and T R Cech
July 1981, Journal of molecular biology,
B L Golden, and A R Gooding, and E R Podell, and T R Cech
January 2009, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!