Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. 1996

M Ibdah, and A Bar-Ilan, and O Livnah, and J V Schloss, and Z Barak, and D M Chipman
Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Acetohydroxy acid synthase (AHAS, EC 4.1.3.18) catalyzes the thiamin pyrophosphate (TPP)-dependent decarboxylation of pyruvate and condensation of the resulting two-carbon moiety with a second alpha-keto acid. It belongs to a family of homologous, TPP-dependent enzymes which catalyze different reactions which start from decarboxylation of alpha-keto acids. A model for the structure of Escherichia coli AHAS isozyme II, based on its homology with pyruvate oxidase and experimental testing of the model by site-directed mutagenesis, has been used here to study how AHAS controls the chemical fate of a decarboxylated keto acid. Because of the potential conformational freedom of the reacting substrates, residues interacting with the substrate could not be identified directly from the model of AHAS. Three residues were considered as candidates for involvement in the recognition of alpha-ketobutyrate, as the amino acids at these sites in a unique low-specificity AHAS are different from those in typical AHASs, which are highly specific for reaction with alpha-ketobutyrate as second substrate, in preference to pyruvate. These residues were altered in AHAS II by site-directed mutagenesis. Replacement of Trp464 lowers the specificity by at least 1 order of magnitude, with minor effects on the activity or stability of the enzyme, suggesting that Trp464 contributes > or = 1.3 kcal mol-1 to interaction with the "extra" methyl of alpha-ketobutyrate. Mutations of Met460 or Thr70 have small effects on specificity and do affect other properties of the protein. A model for enzyme-substrate interactions can be proposed on the basis of these results. The model of AHAS also explains previously reported spontaneous mutants of AHAS resistant to sulfonylurea herbicides, which probably bind in the narrow depression which provides access to the bound TPP. A role for the C terminus of the enzyme polypeptide in determination on the reaction pathway is also possible.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002151 Calorimetry The measurement of the quantity of heat involved in various processes, such as chemical reactions, changes of state, and formations of solutions, or in the determination of the heat capacities of substances. The fundamental unit of measurement is the joule or the calorie (4.184 joules). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000095 Acetolactate Synthase A flavoprotein enzyme that catalyzes the formation of acetolactate from 2 moles of PYRUVATE in the biosynthesis of VALINE and the formation of acetohydroxybutyrate from pyruvate and alpha-ketobutyrate in the biosynthesis of ISOLEUCINE. This enzyme was formerly listed as EC 4.1.3.18. Acetohydroxy Acid Synthase,Acetohydroxy Acid Synthetase,Acetolactate Synthetase,Acetohydroxyacid Synthetase I,Acetoxyhydroxyacid Synthase III,Acid Synthase, Acetohydroxy,Acid Synthetase, Acetohydroxy,Synthase III, Acetoxyhydroxyacid,Synthase, Acetohydroxy Acid,Synthase, Acetolactate,Synthetase I, Acetohydroxyacid,Synthetase, Acetohydroxy Acid,Synthetase, Acetolactate
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

M Ibdah, and A Bar-Ilan, and O Livnah, and J V Schloss, and Z Barak, and D M Chipman
May 2004, Biochemical and biophysical research communications,
M Ibdah, and A Bar-Ilan, and O Livnah, and J V Schloss, and Z Barak, and D M Chipman
February 1997, The Journal of biological chemistry,
M Ibdah, and A Bar-Ilan, and O Livnah, and J V Schloss, and Z Barak, and D M Chipman
December 2006, Biotechnology letters,
M Ibdah, and A Bar-Ilan, and O Livnah, and J V Schloss, and Z Barak, and D M Chipman
August 1996, The Journal of biological chemistry,
M Ibdah, and A Bar-Ilan, and O Livnah, and J V Schloss, and Z Barak, and D M Chipman
July 2002, Journal of the American Chemical Society,
M Ibdah, and A Bar-Ilan, and O Livnah, and J V Schloss, and Z Barak, and D M Chipman
February 1995, Biochemistry,
M Ibdah, and A Bar-Ilan, and O Livnah, and J V Schloss, and Z Barak, and D M Chipman
March 1995, The Journal of steroid biochemistry and molecular biology,
M Ibdah, and A Bar-Ilan, and O Livnah, and J V Schloss, and Z Barak, and D M Chipman
July 2010, BMC plant biology,
M Ibdah, and A Bar-Ilan, and O Livnah, and J V Schloss, and Z Barak, and D M Chipman
June 1994, Biochemistry,
M Ibdah, and A Bar-Ilan, and O Livnah, and J V Schloss, and Z Barak, and D M Chipman
March 2012, Applied microbiology and biotechnology,
Copied contents to your clipboard!