Proliferative effect of ammodytin L from the venom of Vipera ammodytes on 208F rat fibroblasts in culture. 1996

S Rufini, and M P Cesaroni, and N Balestro, and P Luly
Department of Biology, University of Rome, Tor Vergata, Italy.

Ammodytin L, purified from the venom of Vipera ammodytes, triggers a rapid and dramatic lytic process in myotubes in vitro, as well as in differentiated muscle cells in vivo, through a mechanism that is not well understood. Despite its great sequence similarity to phospholipase A2, it is devoid of any enzyme activity. Data on artificial membranes demonstrating a direct interaction between this toxin and the hydrophobic core of the lipid bilayer suggest that the toxin also acts on the lipid microenvironment in cell membranes. Recent experiments on living cells do not confirm this hypothesis, and a more intricate mechanism is proposed. In vitro, ammodytin L has necrotic effects only in well-differentiated myogenic cells, whereas other cell types such as platelets, red blood cells and lymphocytes show neither morphological nor functional alterations. In this work we demonstrate that rat 208F fibroblasts in culture after ammodytin L challenge increase [3H]thymidine incorporation, indicating that this toxin has a myogenic effect. Moreover, ammodytin L increases intracellular Ca2+ by acting on intracellular stores probably by activating a phosphatidylinositol-specific phospholipase C. Preincubation of the cells with ammodytin L did not prevent the massive Ca2+ release evoked by bradykinin, a phenomenon observed when fibroblasts were incubated with both thapsigargin and ionomycin. Heparin, an agent that inhibits the necrotic effect of the myotoxin in myotubes, also reduces the effect of ammodytin L on DNA synthesis. Heparin inhibits only the late sustained increase in intracellular Ca2+ induced by the toxin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast

Related Publications

S Rufini, and M P Cesaroni, and N Balestro, and P Luly
December 2017, Toxicon : official journal of the International Society on Toxinology,
S Rufini, and M P Cesaroni, and N Balestro, and P Luly
August 1995, Biochimica et biophysica acta,
S Rufini, and M P Cesaroni, and N Balestro, and P Luly
December 1991, European journal of biochemistry,
S Rufini, and M P Cesaroni, and N Balestro, and P Luly
January 1996, Toxicon : official journal of the International Society on Toxinology,
S Rufini, and M P Cesaroni, and N Balestro, and P Luly
January 1970, Bollettino della Societa italiana di biologia sperimentale,
S Rufini, and M P Cesaroni, and N Balestro, and P Luly
January 1963, Arhiv za higijenu rada i toksikologiju,
S Rufini, and M P Cesaroni, and N Balestro, and P Luly
January 1965, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
S Rufini, and M P Cesaroni, and N Balestro, and P Luly
June 2018, Toxins,
S Rufini, and M P Cesaroni, and N Balestro, and P Luly
April 1970, Bollettino della Societa italiana di biologia sperimentale,
S Rufini, and M P Cesaroni, and N Balestro, and P Luly
March 2008, Journal of proteome research,
Copied contents to your clipboard!