Down-regulation of beta-adrenergic receptor following long-term monocular deprivation in cat visual cortex. 1996

K Muguruma, and K Imamura, and H Morii, and Y Watanabe
Department of Neuroscience, Osaka Bioscience Institute, Suita-shi, Japan.

To examine how adrenergic receptor binding is modified by experimental manipulation of sensory afferent, we carried out binding experiments (membrane fraction and in vitro autoradiography) for both alpha 2- and beta-adrenergic receptors in the brain of cats which had been deprived of vision in one eye. In the cerebral cortex of control animals, beta-adrenergic receptor (beta-AR) binding was found to be higher in the occipital regions than in other regions, while alpha 2-AR binding was relatively uniform. Monocular deprivation throughout the postnatal sensitive period (1-7 month of age) significantly decreased beta-AR binding in the visual cortex and lateral geniculate nucleus. Scatchard plot analysis in the visual cortex showed ca. 50% reduction in Bmax and little change in Kd. No significant difference was found in alpha 2-AR binding following monocular deprivation. Similar extent of down-regulation in beta-AR binding was confirmed in all layers of visual cortex using autoradiography.

UI MeSH Term Description Entries
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D015016 Yohimbine A plant alkaloid with alpha-2-adrenergic blocking activity. Yohimbine has been used as a mydriatic and in the treatment of ERECTILE DYSFUNCTION. Rauwolscine,Aphrodine Hydrochloride,Aphrodyne,Corynanthine,Corynanthine Tartrate,Pluriviron,Rauhimbine,Yocon,Yohimbin Spiegel,Yohimbine Houdé,Yohimbine Hydrochloride,Yohimex,Hydrochloride, Aphrodine,Hydrochloride, Yohimbine,Tartrate, Corynanthine
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor

Related Publications

K Muguruma, and K Imamura, and H Morii, and Y Watanabe
January 1999, Nature,
K Muguruma, and K Imamura, and H Morii, and Y Watanabe
August 1975, Experimental brain research,
K Muguruma, and K Imamura, and H Morii, and Y Watanabe
April 2023, Cerebral cortex (New York, N.Y. : 1991),
K Muguruma, and K Imamura, and H Morii, and Y Watanabe
January 1992, Journal of neurophysiology,
K Muguruma, and K Imamura, and H Morii, and Y Watanabe
September 2007, Learning & memory (Cold Spring Harbor, N.Y.),
K Muguruma, and K Imamura, and H Morii, and Y Watanabe
May 2012, Current biology : CB,
K Muguruma, and K Imamura, and H Morii, and Y Watanabe
August 1982, Brain research,
K Muguruma, and K Imamura, and H Morii, and Y Watanabe
May 1976, Experimental brain research,
K Muguruma, and K Imamura, and H Morii, and Y Watanabe
April 1984, Brain research,
Copied contents to your clipboard!