Auditory nerve neurophonic recorded from the round window of the Mongolian gerbil. 1995

K R Henry
Department of Psychology, University of California, Davis 95616, USA.

In the Mongolian gerbil, round window (RW) recordings of averaged responses to phase-locked acoustic stimuli which are not alternated in polarity can include both the cochlear mirophonic (CM) and auditory nerve neurophonic (ANN). The ANN can dominate the recordings when the RW electrode is referenced to some portion of the body that allows the two electrodes to straddle the auditory nerve. Concentric bipolar RW electrodes are biased in favor of the CM. When there is a substantial ANN component in the RW response, as the sinusoidal stimulus intensity increases there is a non-monotonic increase of amplitude and a pronounced change of phase of the response. When the phase-locked stimuli are alternated in polarity in order to cancel the CM, a residual response is often observed. This residual response has twice the frequency of the stimulus and is decreased in amplitude by forward masking. It also shows a pattern of amplitude decrement following the stimulus onset, resembling adaptation of the firing rate of cochlear nerve axons. Tetrodotoxin (TTX) eliminates the non-monotonic RW amplitude input-output (I/O) function, reduces the phase changes of the response as the stimulus intensity is increased, eliminates the residual non-canceled response to alternated stimuli, and the time-limited amplitude decrements which resemble adaptation. Following application of TTX, the RW response of the gerbil to stimuli with non-alternated polarity much more closely resembles the CM responses of other animals. It is concluded that the gerbil's residual response following cancellation of the CM is the ANN, and that the RW of the gerbil is a convenient site for recording measures of phase-locked cochlear axonal activity.

UI MeSH Term Description Entries
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D003055 Cochlear Microphonic Potentials The electric response of the cochlear hair cells to acoustic stimulation. Cochlear Microphonic Potential,Potential, Cochlear Microphonic,Potentials, Cochlear Microphonic
D005849 Gerbillinae A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys. Gerbils,Jird,Meriones,Psammomys,Rats, Sand,Gerbil,Jirds,Merione,Rat, Sand,Sand Rat,Sand Rats
D000159 Vestibulocochlear Nerve The 8th cranial nerve. The vestibulocochlear nerve has a cochlear part (COCHLEAR NERVE) which is concerned with hearing and a vestibular part (VESTIBULAR NERVE) which mediates the sense of balance and head position. The fibers of the cochlear nerve originate from neurons of the SPIRAL GANGLION and project to the cochlear nuclei (COCHLEAR NUCLEUS). The fibers of the vestibular nerve arise from neurons of Scarpa's ganglion and project to the VESTIBULAR NUCLEI. Cranial Nerve VIII,Eighth Cranial Nerve,Cochleovestibular Nerve,Statoacoustic Nerve,Cochleovestibular Nerves,Cranial Nerve VIIIs,Cranial Nerve, Eighth,Cranial Nerves, Eighth,Eighth Cranial Nerves,Nerve VIIIs, Cranial,Nerve, Cochleovestibular,Nerve, Eighth Cranial,Nerve, Statoacoustic,Nerve, Vestibulocochlear,Nerves, Cochleovestibular,Nerves, Eighth Cranial,Nerves, Statoacoustic,Nerves, Vestibulocochlear,Statoacoustic Nerves,VIIIs, Cranial Nerve,Vestibulocochlear Nerves
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001309 Auditory Threshold The audibility limit of discriminating sound intensity and pitch. Auditory Thresholds,Threshold, Auditory,Thresholds, Auditory
D012405 Round Window, Ear Fenestra of the cochlea, an opening in the basal wall between the MIDDLE EAR and the INNER EAR, leading to the cochlea. It is closed by a secondary tympanic membrane. Cochlear Round Window,Fenestra Cochleae,Round Window of Ear,Cochlear Round Windows,Ear Round Window,Round Window, Cochlear,Round Windows, Cochlear,Round Windows, Ear
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu

Related Publications

K R Henry
June 1990, The Journal of the Acoustical Society of America,
K R Henry
January 1979, Neirofiziologiia = Neurophysiology,
K R Henry
October 2023, The Journal of comparative neurology,
K R Henry
February 2014, Journal of neurophysiology,
K R Henry
September 2002, Journal of the Association for Research in Otolaryngology : JARO,
K R Henry
August 1990, The Journal of the Acoustical Society of America,
K R Henry
December 1989, The Journal of the Acoustical Society of America,
Copied contents to your clipboard!