Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest. 1996

T Shin'oka, and D Shum-Tim, and R A Jonas, and H G Lidov, and P C Laussen, and T Miura, and A du Plessis
Department of Cardiovascular Surgery, Children's Hospital, Boston, MA 02115, USA.

BACKGROUND Various degrees of hemodilution are currently in clinical use during deep hypothermic circulatory arrest to counteract deleterious rheologic effects linked with brain injury by previous reports. METHODS Seventeen piglets were randomly assigned to three groups. Group I piglets (n = 7) received colloid and crystalloid prime (hematocrit < 10%), group II piglets (n = 5) received blood and crystalloid prime (hematocrit 20%), group III piglets (n = 5) received blood prime (hematocrit 30%). All groups underwent 60 minutes of deep hypothermic circulatory arrest at 15 degrees C with continuous magnetic resonance spectroscopy and near-infrared spectroscopy Neurologic recovery was evaluated for 4 days (neurologic deficit score 0, normal, to 500, brain death; overall performance category 1, normal, to 5, brain death). Neurohistologic score (0, normal, to 5+, necrosis) was assessed after the animals were euthanized on day 4. RESULTS Group I had significant loss of phosphocreatine and intracellular acidosis during early cooling (phosphocreatine in group I, 86.3% +/- 26.8%; group II, 117.3% +/- 8.6%; group III, 110.9% +/- 2.68%; p = 0.0008; intracellular pH in group I, 6.95 +/- 0.18; group II, 7.28 +/- 0.04; group III, 7.49 +/- 0.04; p = 0.0048). Final recovery was the same for all groups. Cytochrome aa3 was more reduced in group I during deep hypothermic circulatory arrest than in either of the other groups (group I, -43.6 +/- 2.6; group II, -16.0 +/- 5.2; group III, 1.3 +/= 3.1; p < 0.0001). Neurologic deficit score was best preserved in group III (p < 0.05 group II vs group III) on the first postoperative day, although this difference diminished with time and all animals were neurologically normal after 4 days. Histologic assessment was worst among group I in neocortex area (group I, 1.33 +/- 0.3; group II, 0.22 +/- 0.1; group III, 0.40 +/- 0.2, p < 0.05, group I vs group II; p = 0.0287, group I vs group III). CONCLUSIONS Extreme hemodilution during cardiopulmonary bypass may cause inadequate oxygen delivery during early cooling. The higher hematocrit with a blood prime is associated with improved cerebral recovery after deep hypothermic circulatory arrest.

UI MeSH Term Description Entries
D007036 Hypothermia, Induced Abnormally low BODY TEMPERATURE that is intentionally induced in warm-blooded animals by artificial means. In humans, mild or moderate hypothermia has been used to reduce tissue damages, particularly after cardiac or spinal cord injuries and during subsequent surgeries. Induced Hypothermia,Mild Hypothermia, Induced,Moderate Hypothermia, Induced,Targeted Temperature Management,Therapeutic Hypothermia,Hypothermia, Therapeutic,Induced Mild Hypothermia,Induced Mild Hypothermias,Induced Moderate Hypothermia,Induced Moderate Hypothermias,Mild Hypothermias, Induced,Moderate Hypothermias, Induced,Targeted Temperature Managements
D009460 Neurologic Examination Assessment of sensory and motor responses and reflexes that is used to determine impairment of the nervous system. Examination, Neurologic,Neurological Examination,Examination, Neurological,Examinations, Neurologic,Examinations, Neurological,Neurologic Examinations,Neurological Examinations
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D006324 Heart Arrest, Induced A procedure to stop the contraction of MYOCARDIUM during HEART SURGERY. It is usually achieved with the use of chemicals (CARDIOPLEGIC SOLUTIONS) or cold temperature (such as chilled perfusate). Cardiac Arrest, Induced,Cardioplegia,Induced Cardiac Arrest,Induced Heart Arrest,Cardioplegias
D006400 Hematocrit The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value. Erythrocyte Volume, Packed,Packed Red-Cell Volume,Erythrocyte Volumes, Packed,Hematocrits,Packed Erythrocyte Volume,Packed Erythrocyte Volumes,Packed Red Cell Volume,Packed Red-Cell Volumes,Red-Cell Volume, Packed,Red-Cell Volumes, Packed,Volume, Packed Erythrocyte,Volume, Packed Red-Cell,Volumes, Packed Erythrocyte,Volumes, Packed Red-Cell

Related Publications

T Shin'oka, and D Shum-Tim, and R A Jonas, and H G Lidov, and P C Laussen, and T Miura, and A du Plessis
June 1992, The Journal of thoracic and cardiovascular surgery,
T Shin'oka, and D Shum-Tim, and R A Jonas, and H G Lidov, and P C Laussen, and T Miura, and A du Plessis
September 2013, Therapeutic hypothermia and temperature management,
T Shin'oka, and D Shum-Tim, and R A Jonas, and H G Lidov, and P C Laussen, and T Miura, and A du Plessis
January 1999, The Journal of thoracic and cardiovascular surgery,
T Shin'oka, and D Shum-Tim, and R A Jonas, and H G Lidov, and P C Laussen, and T Miura, and A du Plessis
December 2006, Canadian journal of anaesthesia = Journal canadien d'anesthesie,
T Shin'oka, and D Shum-Tim, and R A Jonas, and H G Lidov, and P C Laussen, and T Miura, and A du Plessis
February 2008, Journal of cardiothoracic and vascular anesthesia,
T Shin'oka, and D Shum-Tim, and R A Jonas, and H G Lidov, and P C Laussen, and T Miura, and A du Plessis
August 1997, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery,
T Shin'oka, and D Shum-Tim, and R A Jonas, and H G Lidov, and P C Laussen, and T Miura, and A du Plessis
August 2000, The Journal of thoracic and cardiovascular surgery,
T Shin'oka, and D Shum-Tim, and R A Jonas, and H G Lidov, and P C Laussen, and T Miura, and A du Plessis
January 1999, The Journal of thoracic and cardiovascular surgery,
T Shin'oka, and D Shum-Tim, and R A Jonas, and H G Lidov, and P C Laussen, and T Miura, and A du Plessis
May 2013, Annals of cardiothoracic surgery,
T Shin'oka, and D Shum-Tim, and R A Jonas, and H G Lidov, and P C Laussen, and T Miura, and A du Plessis
May 2005, Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies,
Copied contents to your clipboard!